AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiometry

Showing 41 to 50 of 117 articles

Clear Filters

Metrics to evaluate the performance of auto-segmentation for radiation treatment planning: A critical review.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
Advances in artificial intelligence-based methods have led to the development and publication of numerous systems for auto-segmentation in radiotherapy. These systems have the potential to decrease contour variability, which has been associated with ...

Deep learning-enabled EPID-based 3D dosimetry for dose verification of step-and-shoot radiotherapy.

Medical physics
PURPOSE: The study aims at a novel dosimetry methodology to reconstruct a 3D dose distribution as imparted to a virtual cylindrical phantom using an electronic portal imaging device (EPID).

Predicting cancer outcomes with radiomics and artificial intelligence in radiology.

Nature reviews. Clinical oncology
The successful use of artificial intelligence (AI) for diagnostic purposes has prompted the application of AI-based cancer imaging analysis to address other, more complex, clinical needs. In this Perspective, we discuss the next generation of challen...

Deep learning-augmented radioluminescence imaging for radiotherapy dose verification.

Medical physics
PURPOSE: We developed a novel dose verification method using a camera-based radioluminescence imaging system (CRIS) combined with a deep learning-based signal processing technique.

A Machine learning model trained on dual-energy CT radiomics significantly improves immunotherapy response prediction for patients with stage IV melanoma.

Journal for immunotherapy of cancer
BACKGROUND: To assess the additive value of dual-energy CT (DECT) over single-energy CT (SECT) to radiomics-based response prediction in patients with metastatic melanoma preceding immunotherapy.

Radiomics, deep learning and early diagnosis in oncology.

Emerging topics in life sciences
Medical imaging, including X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), plays a critical role in early detection, diagnosis, and treatment response prediction of cancer. To ease radiologists' task and help with challenging c...

Deep learning-based 3Ddose reconstruction with an electronic portal imaging device for magnetic resonance-linear accelerators: a proof of concept study.

Physics in medicine and biology
To develop a novel deep learning-based 3Ddose reconstruction framework with an electronic portal imaging device (EPID) for magnetic resonance-linear accelerators (MR-LINACs).The proposed method directly back-projected 2D portal dose into 3D patient c...

Deep Learning for Patient-Specific Quality Assurance: Predicting Gamma Passing Rates for IMRT Based on Delivery Fluence Informed by log Files.

Technology in cancer research & treatment
In this study, we propose a deep learning-based approach to predict Intensity-modulated radiation therapy (IMRT) quality assurance (QA) gamma passing rates using delivery fluence informed by log files. A total of 112 IMRT plans for chest cancers we...

Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer.

Radiation oncology (London, England)
BACKGROUND: The evaluation of automatic segmentation algorithms is commonly performed using geometric metrics. An analysis based on dosimetric parameters might be more relevant in clinical practice but is often lacking in the literature. The aim of t...

Deep learning methods for enhancing cone-beam CT image quality toward adaptive radiation therapy: A systematic review.

Medical physics
The use of deep learning (DL) to improve cone-beam CT (CBCT) image quality has gained popularity as computational resources and algorithmic sophistication have advanced in tandem. CBCT imaging has the potential to facilitate online adaptive radiation...