Medical dosimetry : official journal of the American Association of Medical Dosimetrists
Dec 20, 2022
Automatic contouring algorithms may streamline clinical workflows by reducing normal organ-at-risk (OAR) contouring time. Here we report the first comprehensive quantitative and qualitative evaluation, along with time savings assessment for a prototy...
. Deep-learning (DL)-based dose engines have been developed to alleviate the intrinsic compromise between the calculation accuracy and efficiency of the traditional dose calculation algorithms. However, current DL-based engines typically possess high...
PURPOSE: The recently introduced Varian Ethos system allows adjusting radiotherapy treatment plans to anatomical changes on a daily basis. The system uses artificial intelligence to speed up the process of creating adapted plans, comes with its own s...
. One critical task for adaptive proton therapy is how to perform spot weight re-tuning and reoptimize plan, both of which are time-consuming and labor intensive. We proposed a deep learning framework (SWFT-Net) to speed up such a task, a starting po...
PURPOSE: The use of convolution neural networks (CNN) to accurately predict dose distributions can accelerate intensity-modulated radiation therapy (IMRT) planning. The purpose of our study is to develop a novel deep learning architecture for precise...
International journal of computer assisted radiology and surgery
Dec 2, 2022
PURPOSE: Speed and accuracy are two critical factors in dose calculation for radiotherapy. Analytical Anisotropic Algorithm (AAA) is a rapid dose calculation algorithm but has dose errors in tissue margin area. Acuros XB (AXB) has high accuracy but t...
Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine
Nov 28, 2022
This paper introduces a novel computational method to simulate and predict radiation dose profiles in a water phantom irradiated by X-rays of 6 and 15 MV at different depths and field sizes using Artificial Neural Networks within the error margin req...
OBJECTIVE: We examined a modified encoder-decoder architecture-based fully convolutional neural network, OrganNet, for simultaneous auto-segmentation of 24 organs at risk (OARs) in the head and neck, followed by validation tests and evaluation of cli...
BACKGROUND: Contouring of internal gross target volume (iGTV) is an essential part of treatment planning in radiotherapy to mitigate the impact of intra-fractional target motion. However, it is usually time-consuming and easily subjected to intra-obs...
In this study, an inter-fraction organ deformation simulation framework for the locally advanced cervical cancer (LACC), which considers the anatomical flexibility, rigidity, and motion within an image deformation, was proposed. Data included 57 CT s...