AIMC Topic: Reoperation

Clear Filters Showing 11 to 20 of 81 articles

Optimized machine learning model for predicting unplanned reoperation after rectal cancer anterior resection.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND: Unplanned reoperation (URO) after surgery adversely affects the quality of life and prognosis of patients undergoing anterior resection for rectal cancer. This study aims to meet the urgent need for reliable predictive tools by developing...

Predicting extended hospital stay following revision total hip arthroplasty: a machine learning model analysis based on the ACS-NSQIP database.

Archives of orthopaedic and trauma surgery
INTRODUCTION: Prolonged length of stay (LOS) following revision total hip arthroplasty (THA) can lead to increased healthcare costs, higher rates of readmission, and lower patient satisfaction. In this study, we investigated the predictive power of m...

Predicting prolonged length of stay following revision total knee arthroplasty: A national database analysis using machine learning models.

International journal of medical informatics
BACKGROUND: As the number of revision total knee arthroplasty (TKA) continues to rise, close attention has been paid to factors influencing postoperative length of stay (LOS). The aim of this study is to develop generalizable machine learning (ML) al...

Development of Machine Learning Models for Predicting the 1-Year Risk of Reoperation After Lower Limb Oncological Resection and Endoprosthetic Reconstruction Based on Data From the PARITY Trial.

Journal of surgical oncology
BACKGROUND: Oncological resection and reconstruction involving the lower extremities commonly lead to reoperations that impact patient outcomes and healthcare resources. This study aimed to develop a machine learning (ML) model to predict this reoper...

Prediction of 30-Day Mortality Following Revision Total Hip and Knee Arthroplasty: Machine Learning Algorithms Outperform CARDE-B, 5-Item, and 6-Item Modified Frailty Index Risk Scores.

The Journal of arthroplasty
BACKGROUND: Although risk calculators are used to prognosticate postoperative outcomes following revision total hip and knee arthroplasty (total joint arthroplasty [TJA]), machine learning (ML) based predictive tools have emerged as a promising alter...

Intraoperative left-sided colorectal anastomotic testing in clinical practice: a multi-treatment machine-learning analysis of the iCral3 prospective cohort.

Updates in surgery
BACKGROUND: Current evidence about intraoperative anastomotic testing after left-sided colorectal resections is still controversial. The aim of this study was to analyze the impact of Indocyanine Green fluorescent angiography (ICG-FA) and air-leak te...

Machine learning for enhanced prognostication: predicting 30-day outcomes following posterior fossa decompression surgery for Chiari malformation type I in a pediatric cohort.

Journal of neurosurgery. Pediatrics
OBJECTIVE: Chiari malformation type I (CM-I) is a congenital disorder occurring in 0.1% of the population. In symptomatic cases, surgery with posterior fossa decompression (PFD) is the treatment of choice. Surgery is, however, associated with peri- a...

Predicting early return to the operating room in early-onset scoliosis patients using machine learning techniques.

Spine deformity
PURPOSE: Surgical treatment of early-onset scoliosis (EOS) is associated with high rates of complications, often requiring unplanned return to the operating room (UPROR). The aim of this study was to create and validate a machine learning model to pr...

Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty.

Clinical orthopaedics and related research
BACKGROUND: Estimating the risk of revision after arthroplasty could inform patient and surgeon decision-making. However, there is a lack of well-performing prediction models assisting in this task, which may be due to current conventional modeling a...