AIMC Topic: Age of Onset

Clear Filters Showing 1 to 10 of 32 articles

Predicting Early-Onset Colorectal Cancer in Individuals Below Screening Age Using Machine Learning and Real-World Data: Case Control Study.

JMIR cancer
BACKGROUND: Colorectal cancer is now the leading cause of cancer-related deaths among young Americans. Accurate early prediction and a thorough understanding of the risk factors for early-onset colorectal cancer (EOCRC) are vital for effective preven...

Predicting Type 2 diabetes onset age using machine learning: A case study in KSA.

PloS one
The rising prevalence of Type 2 Diabetes (T2D) in Saudi Arabia presents significant healthcare challenges. Estimating the age at onset of T2D can aid early interventions, potentially reducing complications due to late diagnoses. This study, conducted...

Machine learning-derived asthma and allergy trajectories in children: a systematic review and meta-analysis.

European respiratory review : an official journal of the European Respiratory Society
INTRODUCTION: Numerous studies have characterised trajectories of asthma and allergy in children using machine learning, but with different techniques and mixed findings. The present work aimed to summarise the evidence and critically appraise the me...

Prediction of late-onset depression in the elderly Korean population using machine learning algorithms.

Scientific reports
Late-onset depression (LOD) refers to depression that newly appears in elderly individuals without prior depression episodes. Predicting future depression is crucial for mitigating the risk of major depression in prospective patients. This study aims...

Assessing polyomic risk to predict Alzheimer's disease using a machine learning model.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Alzheimer's disease (AD) is the most common form of dementia in the elderly. Given that AD neuropathology begins decades before symptoms, there is a dire need for effective screening tools for early detection of AD to facilitate early i...

Handling missing data and measurement error for early-onset myopia risk prediction models.

BMC medical research methodology
BACKGROUND: Early identification of children at high risk of developing myopia is essential to prevent myopia progression by introducing timely interventions. However, missing data and measurement error (ME) are common challenges in risk prediction m...

Utilizing a comprehensive machine learning approach to identify patients at high risk for extended length of stay following spinal deformity surgery in pediatric patients with early onset scoliosis.

Spine deformity
PURPOSE: Early onset scoliosis (EOS) patient diversity makes outcome prediction challenging. Machine learning offers an innovative approach to analyze patient data and predict results, including LOS in pediatric spinal deformity surgery.

Predicting early return to the operating room in early-onset scoliosis patients using machine learning techniques.

Spine deformity
PURPOSE: Surgical treatment of early-onset scoliosis (EOS) is associated with high rates of complications, often requiring unplanned return to the operating room (UPROR). The aim of this study was to create and validate a machine learning model to pr...

Prediction of early-onset colorectal cancer mortality rates in the United States using machine learning.

Cancer medicine
INTRODUCTION: The current study, focusing on a significant US (United States) colorectal cancer (CRC) burden, employs machine learning for predicting future rates among young population.

Predicting age at onset of type 1 diabetes in children using regression, artificial neural network and Random Forest: A case study in Saudi Arabia.

PloS one
The rising incidence of type 1 diabetes (T1D) among children is an increasing concern globally. A reliable estimate of the age at onset of T1D in children would facilitate intervention plans for medical practitioners to reduce the problems with delay...