Translational vision science & technology
May 1, 2023
PURPOSE: The purpose of this study was to develop a deep learning-based fully automated reconstruction and quantification algorithm which automatically delineates the neurites and somas of retinal ganglion cells (RGCs).
Translational vision science & technology
Mar 1, 2023
PURPOSE: Assessment of glaucomatous damage in animal models is facilitated by rapid and accurate quantification of retinal ganglion cell (RGC) axonal loss and morphologic change. However, manual assessment is extremely time- and labor-intensive. Here...
Translational vision science & technology
Feb 1, 2023
PURPOSE: (1) To assess the performance of geometric deep learning in diagnosing glaucoma from a single optical coherence tomography (OCT) scan of the optic nerve head and (2) to compare its performance to that obtained with a three-dimensional (3D) c...
PURPOSE: (1) To evaluate the performance of deep learning (DL) classifier in detecting glaucoma, based on wide-field swept-source optical coherence tomography (SS-OCT) images. (2) To assess the performance of DL-based fusion methods in diagnosing gla...
PURPOSE: To design a robust and automated estimation method for measuring the retinal nerve fiber layer (RNFL) thickness using spectral domain optical coherence tomography (SD-OCT).
PURPOSE: To compare change over time in eye-specific optical coherence tomography (OCT) retinal nerve fiber layer (RNFL)-based region-of-interest (ROI) maps developed using unsupervised deep-learning auto-encoders (DL-AE) to circumpapillary RNFL (cpR...
Translational vision science & technology
Jun 1, 2021
PURPOSE: To develop a deep learning model to estimate the visual field (VF) from spectral-domain optical coherence tomography (SD-OCT) and swept-source OCT (SS-OCT) and to compare the performance between them.
IMPORTANCE: Conventional segmentation of the retinal nerve fiber layer (RNFL) is prone to errors that may affect the accuracy of spectral-domain optical coherence tomography (SD-OCT) scans in detecting glaucomatous damage.