OBJECTIVES: To develop a deep learning (DL) model based on computed tomography (CT) images to predict the success of extracorporeal shock wave lithotripsy (SWL) treatment for patients with ureteral stones larger than 1 cm.
Tennis, a widely enjoyed sport, motivates athletes and coaches to optimize training for competitive success. This retrospective predictive study examines anthropometric features and statistics of 1990 tennis players in the 2022 season, using 20,040 d...
The spine journal : official journal of the North American Spine Society
Nov 4, 2024
BACKGROUND: Dysphonia is one of the more common complications following anterior cervical discectomy and fusion (ACDF). ACDF is the gold standard for treating degenerative cervical spine disorders, and identifying high-risk patients is therefore cruc...
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics
Nov 4, 2024
INTRODUCTION: Orthodontically induced root resorption (OIRR) is a common and undesirable consequence of orthodontic treatment. Traditionally, studies employ manual methods to conduct 3-dimensional quantitative analysis of OIRR via cone-beam computed ...
Contact lens & anterior eye : the journal of the British Contact Lens Association
Nov 4, 2024
BACKGROUND: To compare the efficiency of three artificial intelligence (AI) frameworks (Standard Machine Learning (ML), Multi-Layer Perceptron (MLP) and Convolution Neural Networks (CNN)) with a reference method (Mean radius of curvature (K)) to pred...
BACKGROUND AND OBJECTIVES: Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific eff...
Journal of the American Heart Association
Nov 4, 2024
BACKGROUND: Early detection of left and right ventricular systolic dysfunction (LVSD and RVSD respectively) in children can lead to intervention to reduce morbidity and death. Existing artificial intelligence algorithms can identify LVSD and RVSD in ...
OBJECTIVES: Our research aims to construct machine learning prediction models to identify patients proned to recurrence after inverted papilloma (IP) surgery and guide their follow-up treatment.
RATIONALE AND OBJECTIVES: Detection and diagnosis of architectural distortion (AD) on digital breast tomosynthesis (DBT) is challenging. This study applied artificial intelligence (AI) using deep learning (DL) algorithms to detect AD, followed by rad...
BACKGROUND: This study aimed to construct and assess a comprehensive model that integrates MRI-derived deep learning radiomics, functional imaging (fMRI), and clinical indicators to predict early efficacy of radiotherapy in nasopharyngeal carcinoma (...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.