We present MoCHI, a tool to fit interpretable models using deep mutational scanning data. MoCHI infers free energy changes, as well as interaction terms (energetic couplings) for specified biophysical models, including from multimodal phenotypic data...
Journal of magnetic resonance (San Diego, Calif. : 1997)
Nov 29, 2024
In this study, we introduce a denoising method aimed at improving the contrast ratio in low-field MRI (LFMRI) using an advanced 3D deep convolutional residual network model. Our approach employs synthetic brain imaging datasets that closely mimic the...
INTRODUCTION: The identification of peptides eluted from HLA complexes by mass spectrometry (MS) can provide critical data for deep learning models of antigen presentation prediction and promote neoantigen vaccine design. A major challenge remains in...
BACKGROUND: Manually creating multiple-choice questions (MCQ) is inefficient. Automatic item generation (AIG) offers a scalable solution, with two main approaches: template-based and non-template-based (AI-driven). Template-based AIG ensures accuracy...
Accurately predicting protein-ligand interactions is crucial for understanding cellular processes. We introduce SurfDock, a deep-learning method that addresses this challenge by integrating protein sequence, three-dimensional structural graphs and su...
Journal of chemical information and modeling
Nov 27, 2024
Cyanobacteria strains have the potential to produce bioactive compounds that can be used in therapeutics and bioremediation. Therefore, compiling all information about these compounds to consider their value as bioresources for industrial and researc...
The increasing availability of massive genetic sequencing data in the clinical setting has triggered the need for appropriate tools to help fully exploit the wealth of information these data possess. GFPrint™ is a proprietary streaming algorithm desi...
Understanding the morphology of amyloid fibrils is crucial for comprehending the aggregation and degradation mechanisms of abnormal proteins implicated in various diseases, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and vario...
Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The stru...
INTRODUCTION: The delineation of organs-at-risk and lymph node areas is a crucial step in radiotherapy, but it is time-consuming and associated with substantial user-dependent variability in contouring. Artificial intelligence (AI) appears to be the ...