AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Survival Analysis

Showing 21 to 30 of 303 articles

Clear Filters

Predicting the time to get back to work using statistical models and machine learning approaches.

BMC medical research methodology
BACKGROUND: Whether machine learning approaches are superior to classical statistical models for survival analyses, especially in the case of lack of proportionality, is unknown.

Predicting early mortality in hemodialysis patients: a deep learning approach using a nationwide prospective cohort in South Korea.

Scientific reports
Early mortality after hemodialysis (HD) initiation significantly impacts the longevity of HD patients. This study aimed to quantify the effect sizes of risk factors on mortality using various machine learning approaches. A cohort of 3284 HD patients ...

Interpretable machine learning for time-to-event prediction in medicine and healthcare.

Artificial intelligence in medicine
Time-to-event prediction, e.g. cancer survival analysis or hospital length of stay, is a highly prominent machine learning task in medical and healthcare applications. However, only a few interpretable machine learning methods comply with its challen...

Survival causal rule ensemble method considering the main effect for estimating heterogeneous treatment effects.

Statistics in medicine
With an increasing focus on precision medicine in medical research, numerous studies have been conducted in recent years to clarify the relationship between treatment effects and patient characteristics. The treatment effects for patients with differ...

Development of an individualized dementia risk prediction model using deep learning survival analysis incorporating genetic and environmental factors.

Alzheimer's research & therapy
BACKGROUND: Dementia is a major public health challenge in modern society. Early detection of high-risk dementia patients and timely intervention or treatment are of significant clinical importance. Neural network survival analysis represents the mos...

TransformerLSR: Attentive joint model of longitudinal data, survival, and recurrent events with concurrent latent structure.

Artificial intelligence in medicine
In applications such as biomedical studies, epidemiology, and social sciences, recurrent events often co-occur with longitudinal measurements and a terminal event, such as death. Therefore, jointly modeling longitudinal measurements, recurrent events...

Interpretable deep learning survival predictions in sporadic Creutzfeldt-Jakob disease.

Journal of neurology
BACKGROUND: Sporadic Creutzfeldt-Jakob disease (sCJD) is a rapidly progressive and fatal prion disease with significant public health implications. Survival is heterogenous, posing challenges for prognostication and care planning. We developed a surv...

Application of machine learning in breast cancer survival prediction using a multimethod approach.

Scientific reports
Breast cancer is one of the most prevalent cancers with an increasing trend in both incidence and mortality rates in Iran. Survival analysis is a pivotal measure in setting appropriate care plans.  To the best of our knowledge, this study is pioneeri...

Survival parametric modeling for patients with heart failure based on Kernel learning.

BMC medical research methodology
Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by i...