AIMC Topic: Treatment Outcome

Clear Filters Showing 371 to 380 of 3204 articles

GWO+RuleFit: rule-based explainable machine-learning combined with heuristics to predict mid-treatment FDG PET response to chemoradiation for locally advanced non-small cell lung cancer.

Physics in medicine and biology
Vital rules learned from fluorodeoxyglucose positron emission tomography (FDG-PET) radiomics of tumor subregional response can provide clinical decision support for precise treatment adaptation. We combined a rule-based machine learning (ML) model (R...

Artificial intelligence in total and unicompartmental knee arthroplasty.

BMC musculoskeletal disorders
The application of Artificial intelligence (AI) and machine learning (ML) tools in total (TKA) and unicompartmental knee arthroplasty (UKA) emerges with the potential to improve patient-centered decision-making and outcome prediction in orthopedics, ...

Artificial Intelligence-Driven Prediction Revealed CFTR Associated with Therapy Outcome of Breast Cancer: A Feasibility Study.

Oncology
INTRODUCTION: In silico tools capable of predicting the functional consequences of genomic differences between individuals, many of which are AI-driven, have been the most effective over the past two decades for non-synonymous single nucleotide varia...

Multi-parameter MRI-Based Machine Learning Model to Evaluate the Efficacy of STA-MCA Bypass Surgery for Moyamoya Disease: A Pilot Study.

Journal of imaging informatics in medicine
Superficial temporal artery-middle cerebral artery (STA-MCA) bypass surgery represents the primary treatment for Moyamoya disease (MMD), with its efficacy contingent upon collateral vessel development. This study aimed to develop and validate a machi...

Treatment with robot-assisted gait trainer Walkbot along with physiotherapy vs. isolated physiotherapy in children and adolescents with cerebral palsy. Experimental study.

BMC neurology
BACKGROUND: Improving walking ability is a key objective in the treatment of children and adolescents with cerebral palsy, since it directly affects their activity and participation. In recent years, robotic technology has been implemented in gait tr...

Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer.

PeerJ
BACKGROUND: Machine learning classifiers are increasingly used to create predictive models for pathological complete response (pCR) in breast cancer after neoadjuvant therapy (NAT). Few studies have compared the effectiveness of different ML classifi...

Identifying high-risk Fontan phenotypes using K-means clustering of cardiac magnetic resonance-based dyssynchrony metrics.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: Individuals with a Fontan circulation encompass a heterogeneous group with adverse outcomes linked to ventricular dilation, dysfunction, and dyssynchrony. The purpose of this study was to assess if unsupervised machine learning cluster an...

Deep learning analysis of serial digital breast tomosynthesis images in a prospective cohort of breast cancer patients who received neoadjuvant chemotherapy.

European journal of radiology
PURPOSE: Different imaging tools, including digital breast tomosynthesis (DBT), are frequently used for evaluating tumor response during neoadjuvant chemotherapy (NACT). This study aimed to explore whether using artificial intelligence (AI) for seria...

Deep learning model based on endoscopic images predicting treatment response in locally advanced rectal cancer undergo neoadjuvant chemoradiotherapy: a multicenter study.

Journal of cancer research and clinical oncology
PURPOSE: Neoadjuvant chemoradiotherapy has been the standard practice for patients with locally advanced rectal cancer. However, the treatment response varies greatly among individuals, how to select the optimal candidates for neoadjuvant chemoradiot...