AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Drug Administration Schedule

Showing 1 to 10 of 36 articles

Clear Filters

Artificial Intelligence in Drug Treatment.

Annual review of pharmacology and toxicology
The most common applications of artificial intelligence (AI) in drug treatment have to do with matching patients to their optimal drug or combination of drugs, predicting drug-target or drug-drug interactions, and optimizing treatment protocols. This...

Computational modeling of the monoaminergic neurotransmitter and male neuroendocrine systems in an analysis of therapeutic neuroadaptation to chronic antidepressant.

European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology
Second-line depression treatment involves augmentation with one (rarely two) additional drugs, of chronic administration of a selective serotonin reuptake inhibitor (SSRI), which is the first-line depression treatment. Unfortunately, many depressed p...

Tacrolimus Exposure Prediction Using Machine Learning.

Clinical pharmacology and therapeutics
The aim of this work is to estimate the area-under the blood concentration curve of tacrolimus (TAC) following b.i.d. or q.d. dosing in organ transplant patients, using Xgboost machine learning (ML) models. A total of 4,997 and 1,452 TAC interdose ar...

Prediction of Prolonged Opioid Use After Surgery in Adolescents: Insights From Machine Learning.

Anesthesia and analgesia
BACKGROUND: Long-term opioid use has negative health care consequences. Patients who undergo surgery are at risk for prolonged opioid use after surgery (POUS). While risk factors have been previously identified, no methods currently exist to determin...

A deep-learning approach to predict bleeding risk over time in patients on extended anticoagulation therapy.

Journal of thrombosis and haemostasis : JTH
BACKGROUND: Thus far, all the clinical models developed to predict major bleeding in patients on extended anticoagulation therapy use the baseline predictors to stratify patients into different risk groups. Therefore, these models do not account for ...

Optimal STI controls for HIV patients based on an efficient deep Q learning method.

Journal of theoretical biology
We investigate an efficient computational tool to suggest useful treatment regimens for people infected with the human immunodeficiency virus (HIV). Structured treatment interruption (STI) is a regimen in which therapeutic drugs are periodically admi...

Predicting Individual Treatment Effects to Determine Duration of Dual Antiplatelet Therapy After Stent Implantation.

Journal of the American Heart Association
BACKGROUND: After coronary stent implantation, prolonged dual antiplatelet therapy (DAPT) increases bleeding risk, requiring personalization of DAPT duration. The aim of this study was to develop and validate a machine learning model to predict optim...

Integrating real-world data and machine learning: A framework to assess covariate importance in real-world use of alternative intravenous dosing regimens for atezolizumab.

Clinical and translational science
The increase in the availability of real-world data (RWD), in combination with advances in machine learning (ML) methods, provides a unique opportunity for the integration of the two to explore complex clinical pharmacology questions. Here we present...