AIMC Topic: Ultrasonography, Mammary

Clear Filters Showing 31 to 40 of 218 articles

BUSClean: Open-source software for breast ultrasound image pre-processing and knowledge extraction for medical AI.

PloS one
Development of artificial intelligence (AI) for medical imaging demands curation and cleaning of large-scale clinical datasets comprising hundreds of thousands of images. Some modalities, such as mammography, contain highly standardized imaging. In c...

A multimodal machine learning model for the stratification of breast cancer risk.

Nature biomedical engineering
Machine learning models for the diagnosis of breast cancer can facilitate the prediction of cancer risk and subsequent patient management among other clinical tasks. For the models to impact clinical practice, they ought to follow standard workflows,...

Comparative Analysis of Nomogram and Machine Learning Models for Predicting Axillary Lymph Node Metastasis in Early-Stage Breast Cancer: A Study on Clinically and Ultrasound-Negative Axillary Cases Across Two Centers.

Ultrasound in medicine & biology
OBJECTIVE: Early and accurate prediction of axillary lymph node metastasis (ALNM) is crucial in determining appropriate treatment strategies for patients with early-stage breast cancer. The aim of this study was to evaluate the efficacy of radiomic f...

BD-StableNet: a deep stable learning model with an automatic lesion area detection function for predicting malignancy in BI-RADS category 3-4A lesions.

Physics in medicine and biology
The latest developments combining deep learning technology and medical image data have attracted wide attention and provide efficient noninvasive methods for the early diagnosis of breast cancer. The success of this task often depends on a large amou...

Early and noninvasive prediction of response to neoadjuvant therapy for breast cancer via longitudinal ultrasound and MR deep learning: A multicentre study.

Academic radiology
RATIONALE AND OBJECTIVES: The early prediction of response to neoadjuvant chemotherapy (NAC) will aid in the development of personalized treatments for patients with breast cancer. This study investigated the value of longitudinal multimodal deep lea...

ACL-DUNet: A tumor segmentation method based on multiple attention and densely connected breast ultrasound images.

PloS one
Breast cancer is the most common cancer in women. Breast masses are one of the distinctive signs for diagnosing breast cancer, and ultrasound is widely used for screening as a non-invasive and effective method for breast examination. In this study, w...

Machine learning-based discrimination of benign and malignant breast lesions on US: The contribution of shear-wave elastography.

European journal of radiology
PURPOSE: To build and validate a combined radiomics and machine learning (ML) approach using B-mode US and SWE images to differentiate benign from malignant solid breast lesions (BLs) and compare its performance with that of an expert radiologist.

Ultrasound for breast cancer detection: A bibliometric analysis of global trends between 2004 and 2024.

Medical ultrasonography
With the advancement of computer technology and imaging equipment, ultrasound has emerged as a crucial tool in breast cancer diagnosis. To gain deeper insights into the research landscape of ultrasound in breast cancer diagnosis, this study employed ...

A Multicenter Cohort Study on Ultrasound-based Deep Learning Nomogram for Predicting Post-Neoadjuvant Chemotherapy Axillary Lymph Node Status in Breast Cancer Patients.

Academic radiology
RATIONALE AND OBJECTIVES: The aim of this study was to evaluate the capability of an ultrasound (US)-based deep learning (DL) nomogram for predicting axillary lymph node (ALN) status after neoadjuvant chemotherapy (NAC) in breast cancer patients and ...

CBAM-RIUnet: Breast Tumor Segmentation With Enhanced Breast Ultrasound and Test-Time Augmentation.

Ultrasonic imaging
This study addresses the challenge of precise breast tumor segmentation in ultrasound images, crucial for effective Computer-Aided Diagnosis (CAD) in breast cancer. We introduce CBAM-RIUnet, a deep learning (DL) model for automated breast tumor segme...