RATIONALE AND OBJECTIVES: The early prediction of response to neoadjuvant chemotherapy (NAC) will aid in the development of personalized treatments for patients with breast cancer. This study investigated the value of longitudinal multimodal deep lea...
Breast cancer is the most common cancer in women. Breast masses are one of the distinctive signs for diagnosing breast cancer, and ultrasound is widely used for screening as a non-invasive and effective method for breast examination. In this study, w...
PURPOSE: To build and validate a combined radiomics and machine learning (ML) approach using B-mode US and SWE images to differentiate benign from malignant solid breast lesions (BLs) and compare its performance with that of an expert radiologist.
With the advancement of computer technology and imaging equipment, ultrasound has emerged as a crucial tool in breast cancer diagnosis. To gain deeper insights into the research landscape of ultrasound in breast cancer diagnosis, this study employed ...
RATIONALE AND OBJECTIVES: The aim of this study was to evaluate the capability of an ultrasound (US)-based deep learning (DL) nomogram for predicting axillary lymph node (ALN) status after neoadjuvant chemotherapy (NAC) in breast cancer patients and ...
This study addresses the challenge of precise breast tumor segmentation in ultrasound images, crucial for effective Computer-Aided Diagnosis (CAD) in breast cancer. We introduce CBAM-RIUnet, a deep learning (DL) model for automated breast tumor segme...
We investigate the predictive value of a comprehensive model based on preoperative ultrasound radiomics, deep learning, and clinical features for pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) for the breast cancer. We enro...
Diagnostic and interventional radiology (Ankara, Turkey)
Sep 9, 2024
PURPOSE: This study aimed to evaluate the performance of large language models (LLMs) and multimodal LLMs in interpreting the Breast Imaging Reporting and Data System (BI-RADS) categories and providing clinical management recommendations for breast r...
PURPOSE: Mucinous breast carcinoma (MBC) tends to be misdiagnosed as fibroadenomas (FA) due to its benign imaging characteristics. We aimed to develop a deep learning (DL) model to differentiate MBC and FA based on ultrasound (US) images. The model c...
Multi-task learning (MTL) methods are widely applied in breast imaging for lesion area perception and classification to assist in breast cancer diagnosis and personalized treatment. A typical paradigm of MTL is the shared-backbone network architectur...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.