AIMC Topic: Uncertainty

Clear Filters Showing 41 to 50 of 706 articles

T-ALPHA: A Hierarchical Transformer-Based Deep Neural Network for Protein-Ligand Binding Affinity Prediction with Uncertainty-Aware Self-Learning for Protein-Specific Alignment.

Journal of chemical information and modeling
There is significant interest in targeting disease-causing proteins with small molecule inhibitors to restore healthy cellular states. The ability to accurately predict the binding affinity of small molecules to a protein target in silico enables the...

Reducing inference cost of Alzheimer's disease identification using an uncertainty-aware ensemble of uni-modal and multi-modal learners.

Scientific reports
While multi-modal deep learning approaches trained using magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG PET) data have shown promise in the accurate identification of Alzheimer's disease, their clinical appl...

The Effects of Presenting AI Uncertainty Information on Pharmacists' Trust in Automated Pill Recognition Technology: Exploratory Mixed Subjects Study.

JMIR human factors
BACKGROUND: Dispensing errors significantly contribute to adverse drug events, resulting in substantial health care costs and patient harm. Automated pill verification technologies have been developed to aid pharmacists with medication dispensing. Ho...

An accurate and trustworthy deep learning approach for bladder tumor segmentation with uncertainty estimation.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Although deep learning-based intelligent diagnosis of bladder cancer has achieved excellent performance, the reliability of neural network predicted results may not be evaluated. This study aims to explore a trustworthy AI-b...

Effect of Artificial Intelligence Helpfulness and Uncertainty on Cognitive Interactions with Pharmacists: Randomized Controlled Trial.

Journal of medical Internet research
BACKGROUND: Clinical decision support systems leveraging artificial intelligence (AI) are increasingly integrated into health care practices, including pharmacy medication verification. Communicating uncertainty in an AI prediction is viewed as an im...

CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks.

Neural networks : the official journal of the International Neural Network Society
Effective uncertainty estimation is becoming increasingly attractive for enhancing the reliability of neural networks. This work presents a novel approach, termed Credal-Set Interval Neural Networks (CreINNs), for classification. CreINNs retain the f...

Non-parametric Bayesian deep learning approach for whole-body low-dose PET reconstruction and uncertainty assessment.

Medical & biological engineering & computing
Positron emission tomography (PET) imaging plays a pivotal role in oncology for the early detection of metastatic tumors and response to therapy assessment due to its high sensitivity compared to anatomical imaging modalities. The balance between ima...

TKA-AID: An Uncertainty-Aware Deep Learning Classifier to Identify Total Knee Arthroplasty Implants.

The Journal of arthroplasty
BACKGROUND: A drastic increase in the volume of primary total knee arthroplasties (TKAs) performed nationwide will inevitably lead to higher volumes of revision TKAs in which the primary knee implant must be removed. An important step in preoperative...

Federated learning meets Bayesian neural network: Robust and uncertainty-aware distributed variational inference.

Neural networks : the official journal of the International Neural Network Society
Federated Learning (FL) is a popular framework for data privacy protection in distributed machine learning. However, current FL faces some several problems and challenges, including the limited amount of client data and data heterogeneity. These lead...

Uncertainty-aware diabetic retinopathy detection using deep learning enhanced by Bayesian approaches.

Scientific reports
Deep learning-based medical image analysis has shown strong potential in disease categorization, segmentation, detection, and even prediction. However, in high-stakes and complex domains like healthcare, the opaque nature of these models makes it cha...