AIMC Topic: Ventricular Function, Left

Clear Filters Showing 11 to 20 of 178 articles

Super-resolution left ventricular flow and pressure mapping by Navier-Stokes-informed neural networks.

Computers in biology and medicine
Intraventricular vector flow mapping (VFM) is an increasingly adopted echocardiographic technique that derives time-resolved two-dimensional flow maps in the left ventricle (LV) from color-Doppler sequences. Current VFM models rely on kinematic const...

A deep learning based method for left ventricular strain measurements: repeatability and accuracy compared to experienced echocardiographers.

BMC medical imaging
BACKGROUND: Speckle tracking echocardiography (STE) provides quantification of left ventricular (LV) deformation and is useful in the assessment of LV function. STE is increasingly being used clinically, and every effort to simplify and standardize S...

Joint suppression of cardiac bSSFP cine banding and flow artifacts using twofold phase-cycling and a dual-encoder neural network.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: Cardiac balanced steady state free precession (bSSFP) cine imaging suffers from banding and flow artifacts induced by off-resonance. The work aimed to develop a twofold phase cycling sequence with a neural network-based reconstruction (2P...

Detection of Right and Left Ventricular Dysfunction in Pediatric Patients Using Artificial Intelligence-Enabled ECGs.

Journal of the American Heart Association
BACKGROUND: Early detection of left and right ventricular systolic dysfunction (LVSD and RVSD respectively) in children can lead to intervention to reduce morbidity and death. Existing artificial intelligence algorithms can identify LVSD and RVSD in ...

AI derived ECG global longitudinal strain compared to echocardiographic measurements.

Scientific reports
Left ventricular (LV) global longitudinal strain (LVGLS) is versatile; however, it is difficult to obtain. We evaluated the potential of an artificial intelligence (AI)-generated electrocardiography score for LVGLS estimation (ECG-GLS score) to diagn...

Electrocardiograph analysis for risk assessment of heart failure with preserved ejection fraction: A deep learning model.

ESC heart failure
AIMS: Heart failure with preserved ejection fraction (HFpEF) requires an efficient screening method. We developed a deep learning model (DLM) to screen HFpEF risk using electrocardiograms (ECGs).

Accelerated cardiac cine with spatio-coil regularized deep learning reconstruction.

Magnetic resonance in medicine
PURPOSE: To develop an iterative deep learning (DL) reconstruction with spatio-coil regularization and multichannel k-space data consistency for accelerated cine imaging.

Activation of a Soft Robotic Left Ventricular Phantom Embedded in a Closed-Loop Cardiovascular Simulator: A Computational and Experimental Analysis.

Cardiovascular engineering and technology
PURPOSE: Cardiovascular simulators are used in the preclinical testing phase of medical devices. Their reliability increases the more they resemble clinically relevant scenarios. In this study, a physiologically actuated soft robotic left ventricle (...

Rapid estimation of left ventricular contractility with a physics-informed neural network inverse modeling approach.

Artificial intelligence in medicine
Physics-based computer models based on numerical solutions of the governing equations generally cannot make rapid predictions, which in turn limits their applications in the clinic. To address this issue, we developed a physics-informed neural networ...

Deep Learning-based 12-Lead Electrocardiogram for Low Left Ventricular Ejection Fraction Detection in Patients.

The Canadian journal of cardiology
BACKGROUND: Reduced left ventricular ejection fraction (LVEF) initiates heart failure, and promptly identifying low ejection fraction is crucial for managing progression and averting mortality. In this study we developed an artificial intelligence-en...