AI Medical Compendium Journal:
BMC public health

Showing 31 to 40 of 81 articles

Identification of depressive symptoms in adolescents using machine learning combining childhood and adolescence features.

BMC public health
BACKGROUND: Depressive symptoms in adolescents can significantly affect their daily lives and pose risks to their future development. These symptoms may be linked to various factors experienced during both childhood and adolescence. Machine learning ...

Constructing a fall risk prediction model for hospitalized patients using machine learning.

BMC public health
STUDY OBJECTIVES: This study aimed to identify the risk factors associated with falls in hospitalized patients, develop a predictive risk model using machine learning algorithms, and evaluate the validity of the model's predictions.

Use of artificial intelligence to study the hospitalization of women undergoing caesarean section.

BMC public health
OBJECTIVE: The incidence of caesarean sections (CSs) has increased significantly in recent years, especially in developed countries. This study aimed to identify the factors that most influence the length of hospital stay (LOS) after a CS, using data...

Prediction and unsupervised clustering of fertility intention among migrant workers based on machine learning: a cross-sectional survey from Henan, China.

BMC public health
BACKGROUND: Although China has implemented multiple policies to encourage childbirth, the results have been underwhelming. Migrant workers account for a considerable proportion of China's population, most of whom are of childbearing age. However, few...

Forecasting cardiovascular disease mortality using artificial neural networks in Sindh, Pakistan.

BMC public health
Cardiovascular disease (CVD) is a leading cause of death and disability worldwide, and its incidence and prevalence are increasing in many countries. Modeling of CVD plays a crucial role in understanding the trend of CVD death cases, evaluating the e...

Bias in machine learning applications to address non-communicable diseases at a population-level: a scoping review.

BMC public health
BACKGROUND: Machine learning (ML) is increasingly used in population and public health to support epidemiological studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML in population healt...

Machine learning algorithms that predict the risk of prostate cancer based on metabolic syndrome and sociodemographic characteristics: a prospective cohort study.

BMC public health
BACKGROUND: Given the rapid increase in the prevalence of prostate cancer (PCa), identifying its risk factors and developing suitable risk prediction models has important implications for public health. We used machine learning (ML) approach to scree...

Leveraging machine learning models for anemia severity detection among pregnant women following ANC: Ethiopian context.

BMC public health
BACKGROUND: Anemia during pregnancy is a significant public health concern, particularly in resource-limited settings. Machine learning (ML) offers promising avenues for improved anemia detection and management. This study investigates the potential ...

The use of machine and deep learning to model the relationship between discomfort temperature and labor productivity loss among petrochemical workers.

BMC public health
BACKGROUND: Workplace may not only increase the risk of heat-related illnesses and injuries but also compromise work efficiency, particularly in a warming climate. This study aimed to utilize machine learning (ML) and deep learning (DL) algorithms to...

Preferences for attributes of an artificial intelligence-based risk assessment tool for HIV and sexually transmitted infections: a discrete choice experiment.

BMC public health
INTRODUCTION: Early detection and treatment of HIV and sexually transmitted infections (STIs) are crucial for effective control. We previously developed MySTIRisk, an artificial intelligence-based risk tool that predicts the risk of HIV and STIs. We ...