AI Medical Compendium Journal:
IEEE transactions on neural networks and learning systems

Showing 111 to 120 of 780 articles

An Explainable and Generalizable Recurrent Neural Network Approach for Differentiating Human Brain States on EEG Dataset.

IEEE transactions on neural networks and learning systems
Electroencephalogram (EEG) is one of the most widely used brain computer interface (BCI) approaches. Despite the success of existing EEG approaches in brain state recognition studies, it is still challenging to differentiate brain states via explaina...

A Review of Nuclei Detection and Segmentation on Microscopy Images Using Deep Learning With Applications to Unbiased Stereology Counting.

IEEE transactions on neural networks and learning systems
The detection and segmentation of stained cells and nuclei are essential prerequisites for subsequent quantitative research for many diseases. Recently, deep learning has shown strong performance in many computer vision problems, including solutions ...

BAI-Net: Individualized Anatomical Cerebral Cartography Using Graph Neural Network.

IEEE transactions on neural networks and learning systems
Brain atlas is an important tool in the diagnosis and treatment of neurological disorders. However, due to large variations in the organizational principles of individual brains, many challenges remain in clinical applications. Brain atlas individual...

Hypergraph Structural Information Aggregation Generative Adversarial Networks for Diagnosis and Pathogenetic Factors Identification of Alzheimer's Disease With Imaging Genetic Data.

IEEE transactions on neural networks and learning systems
Alzheimer's disease (AD) is a neurodegenerative disease with profound pathogenetic causes. Imaging genetic data analysis can provide comprehensive insights into its causes. To fully utilize the multi-level information in the data, this article propos...

MVCNet: Multiview Contrastive Network for Unsupervised Representation Learning for 3-D CT Lesions.

IEEE transactions on neural networks and learning systems
With the renaissance of deep learning, automatic diagnostic algorithms for computed tomography (CT) have achieved many successful applications. However, they heavily rely on lesion-level annotations, which are often scarce due to the high cost of col...

GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals.

IEEE transactions on neural networks and learning systems
Toward the development of effective and efficient brain-computer interface (BCI) systems, precise decoding of brain activity measured by an electroencephalogram (EEG) is highly demanded. Traditional works classify EEG signals without considering the ...

Anatomy-Guided Spatio-Temporal Graph Convolutional Networks (AG-STGCNs) for Modeling Functional Connectivity Between Gyri and Sulci Across Multiple Task Domains.

IEEE transactions on neural networks and learning systems
The cerebral cortex is folded as gyri and sulci, which provide the foundation to unveil anatomo-functional relationship of brain. Previous studies have extensively demonstrated that gyri and sulci exhibit intrinsic functional difference, which is fur...

GMILT: A Novel Transformer Network That Can Noninvasively Predict EGFR Mutation Status.

IEEE transactions on neural networks and learning systems
Noninvasively and accurately predicting the epidermal growth factor receptor (EGFR) mutation status is a clinically vital problem. Moreover, further identifying the most suspicious area related to the EGFR mutation status can guide the biopsy to avoi...

Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification.

IEEE transactions on neural networks and learning systems
Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. How...

Minicolumn-Based Episodic Memory Model With Spiking Neurons, Dendrites and Delays.

IEEE transactions on neural networks and learning systems
Episodic memory is fundamental to the brain's cognitive function, but how neuronal activity is temporally organized during its encoding and retrieval is still unknown. In this article, combining hippocampus structure with a spiking neural network (SN...