AIM: The aim of the study was to develop machine learning algorithms (MLA) for diagnosing acute graft dysfunction (AGD) in kidney transplant recipients based on contrast-enhanced ultrasound (CEUS) analysis of the graft.Materials and methods: This pro...
AIMS: This study aims to use deep learning (DL) to classify thyroid nodules as benign and malignant with ultrasonography (US). In addition, this study investigates the impact of DL on the diagnostic success of radiologists with different experiences....
Over the past few years, developments in artificial intelligence (AI), especially in radiomics and deep learning, have enabled the extraction of pathophysiology-related information from varied medical imaging and are progressively transforming medica...
AIM: In this paper we proposed different architectures of convolutional neural network (CNN) to classify fatty liver disease in images using only pixels and diagnosis labels as input. We trained and validated our models using a dataset of 629 images ...
AIMS: To develop a deep learning model, with the aid of ChatGPT, for thyroid nodules, utilizing ultrasound images. The cytopathology of the fine needle aspiration biopsy (FNAB) serves as the baseline.