Predicting the occurrence of ventricular tachyarrhythmia (VTA) in advance is a matter of utmost importance for saving the lives of cardiac arrhythmia patients. Machine learning algorithms have been used to predict the occurrence of imminent VTA. In t...
IEEE journal of biomedical and health informatics
Apr 13, 2020
Automated electrocardiogram (ECG) analysis for arrhythmia detection plays a critical role in early prevention and diagnosis of cardiovascular diseases. Extracting powerful features from raw ECG signals for fine-grained diseases classification is stil...
Deep learning models have become a popular mode to classify electrocardiogram (ECG) data. Investigators have used a variety of deep learning techniques for this application. Herein, a detailed examination of deep learning methods for ECG arrhythmia d...
Circulation. Arrhythmia and electrophysiology
Mar 18, 2020
BACKGROUND: Transition zones between healthy myocardium and scar form a spatially complex substrate that may give rise to reentrant ventricular arrhythmias (VAs). We sought to assess the utility of a novel machine learning approach for quantifying 3-...
Automatic detection of arrhythmia is of great significance for early prevention and diagnosis of cardiovascular disease. Traditional feature engineering methods based on expert knowledge lack multidimensional and multi-view information abstraction an...
BACKGROUND: Deep-learning algorithms to annotate electrocardiograms (ECGs) and classify different types of cardiac arrhythmias with the use of a single-lead ECG input data set have been developed. It remains to be determined whether these algorithms ...
Expert review of cardiovascular therapy
Feb 23, 2020
: With the increase in the number of patients with cardiovascular diseases, better risk-prediction models for cardiovascular events are needed. Statistical-based risk-prediction models for cardiovascular events (CVEs) are available, but they lack the...
Automatic or semi-automatic analysis of the equine electrocardiogram (eECG) is currently not possible because human or small animal ECG analysis software is unreliable due to a different ECG morphology in horses resulting from a different cardiac inn...
This study proposes a deep learning model that effectively suppresses the false alarms in the intensive care units (ICUs) without ignoring the true alarms using single- and multi- modal biosignals. Most of the current work in the literature are eithe...