AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Artifacts

Showing 31 to 40 of 645 articles

Clear Filters

Feature-targeted deep learning framework for pulmonary tumorous Cone-beam CT (CBCT) enhancement with multi-task customized perceptual loss and feature-guided CycleGAN.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Thoracic Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy (IGRT) to provide updated patient anatomy information for lung cancer treatments. However, CBCT images often suffer from streaking artifacts an...

Multiple token rearrangement Transformer network with explicit superpixel constraint for segmentation of echocardiography.

Medical image analysis
Diagnostic cardiologists have considerable clinical demand for precise segmentation of echocardiography to diagnose cardiovascular disease. The paradox is that manual segmentation of echocardiography is a time-consuming and operator-dependent task. C...

Deep graph embedding based on Laplacian eigenmaps for MR fingerprinting reconstruction.

Medical image analysis
Magnetic resonance fingerprinting (MRF) is a promising technique for fast quantitative imaging of multiple tissue parameters. However, the highly undersampled schemes utilized in MRF typically lead to noticeable aliasing artifacts in reconstructed im...

Meta-learning guidance for robust medical image synthesis: Addressing the real-world misalignment and corruptions.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Deep learning-based image synthesis for medical imaging is currently an active research topic with various clinically relevant applications. Recently, methods allowing training with misaligned data have started to emerge, yet current solution lack ro...

Deep learning-based CT-free attenuation correction for cardiac SPECT: a new approach.

BMC medical imaging
BACKGROUND: Computed tomography attenuation correction (CTAC) is commonly used in cardiac SPECT imaging to reduce soft-tissue attenuation artifacts. However, CTAC is prone to inaccuracies due to CT artifacts and SPECT-CT mismatch, along with addition...

FLANet: A multiscale temporal convolution and spatial-spectral attention network for EEG artifact removal with adversarial training.

Journal of neural engineering
Denoising artifacts, such as noise from muscle or cardiac activity, is a crucial and ubiquitous concern in neurophysiological signal processing, particularly for enhancing the signal-to-noise ratio in electroencephalograph (EEG) analysis. Novel metho...

MLAR-UNet: LDCT image denoising based on U-Net with multiple lightweight attention-based modules and residual reinforcement.

Physics in medicine and biology
Computed tomography (CT) is a crucial medical imaging technique which uses x-ray radiation to identify cancer tissues. Since radiation poses a significant health risk, low dose acquisition procedures need to be adopted. However, low-dose CT (LDCT) ca...

Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction.

Korean journal of radiology
OBJECTIVE: This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.

Optimization of sparse-view CT reconstruction based on convolutional neural network.

Medical physics
BACKGROUND: Sparse-view CT shortens scan time and reduces radiation dose but results in severe streak artifacts due to insufficient sampling data. Deep learning methods can now suppress these artifacts and improve image quality in sparse-view CT reco...

Deep learning aided determination of the optimal number of detectors for photoacoustic tomography.

Biomedical physics & engineering express
Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology...