AIMC Topic: Bayes Theorem

Clear Filters Showing 21 to 30 of 1809 articles

Integrating AI predictive analytics with naturopathic and yoga-based interventions in a data-driven preventive model to improve maternal mental health and pregnancy outcomes.

Scientific reports
Maternal mental health during pregnancy is a crucial area of research due to its profound impact on both maternal and child well-being. This paper proposes a comprehensive approach to predicting and monitoring psychological health risks in pregnant w...

Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data.

Scientific reports
Basketball remains among the most globally popular sports, with its various competitions drawing substantial attention. The analysis and modeling of basketball game data have long been central topics in sports analytics. In recent years, integrating ...

Prediction of caesarean section birth using machine learning algorithms among pregnant women in a district hospital in Ghana.

BMC pregnancy and childbirth
BACKGROUND: Machine learning algorithms may contribute to improving maternal and child health, including determining the suitability of caesarean section (CS) births in low-resource countries. Despite machine learning algorithms offering a more robus...

Recognition of anxiety and depression using gait data recorded by the kinect sensor: a machine learning approach with data augmentation.

Scientific reports
Anxiety and depression disorders are increasingly common, necessitating methods for real-time assessment and early identification. This study investigates gait analysis as a potential indicator of mental health, using the Microsoft Kinect sensor to c...

The value of machine learning based on spectral CT quantitative parameters in the distinguishing benign from malignant thyroid micro-nodules.

BMC cancer
BACKGROUND AND AIMS: More cases of thyroid micro-nodules have been diagnosed annually in recent years because of advancements in diagnostic technologies and increased public health awareness. To explore the application value of various machine learni...

Mapping global risk of bat and rodent borne disease outbreaks to anticipate emerging threats.

Scientific reports
Future epidemics and/or pandemics may likely arise from zoonotic viruses with bat- and rodent-borne pathogens being among the prime candidates. To improve preparedness and prevention strategies, we predicted the global distribution of bat- and rodent...

Machine learning to improve predictive performance of prehospital early warning scores.

Scientific reports
Early warning scores are used to assess acute patients' risk of being in a critical situation, allowing for early appropriate treatment, avoiding critical outcomes. The early warning scores use changes in vital signs to provide an assessment, however...

Robust Lightweight Graph Neural Network Framework for Accelerating Crystal Structure Prediction.

Journal of chemical information and modeling
This work presents a crystal structure prediction framework that employs a structural search using a derivative-free optimization method, with a supervised Graph Neural Network (GNN) model as the energy evaluator. We address the limitations of existi...

Enhanced E-commerce decision-making through sentiment analysis using machine learning-based approaches and IoT.

PloS one
E-commerce is a vital component of the world economy, providing people with a simple and convenient method for shopping and enabling businesses to expand into new global markets. Improving e-commerce decision-making by utilizing IoT and machine intel...

Comparative investigation of bagging enhanced machine learning for early detection of HCV infections using class imbalance technique with feature selection.

PloS one
Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy o...