BACKGROUND: Depression and cognitive impairments are prevalent among older adults, with evidence suggesting potential links to obesity and lipid metabolism disturbances. This study investigates the relationships between the triglyceride-glucose (TyG)...
Clinical and experimental hypertension (New York, N.Y. : 1993)
Jan 8, 2025
OBJECTIVES: Sufficient attention has not been given to machine learning (ML) models using longitudinal data for investigating important predictors of new onset of hypertension. We investigated the predictive ability of several ML models for the devel...
BACKGROUND: Mexico has one of the highest global incidences of paediatric overweight and obesity. Public health interventions have shown only moderate success, possibly from relying on knowledge extracted using limited types of statistical data analy...
INTRODUCTION: Obesity, defined as a body mass index ≥30 kg/m, is a major public health concern in the United States. Preventative approaches are essential, but they are limited by an inability to accurately predict individuals at highest risk of weig...
Non-contact heart monitoring is crucial in advancing telemedicine, fitness tracking, and mass screening. Remote photoplethysmography (rPPG) is a non-contact technique to obtain information about heart pulse by analyzing the changes in the light inten...
This paper proposes the use of machine learning models to predict one's risk of having hypertension in the future using their routine health checkup data of their current and past visits to a health checkup center. The large-scale and high-dimensiona...
BACKGROUND: Gestational weight gain (GWG) is a critical factor influencing maternal and fetal health. Excessive or insufficient GWG can lead to various complications, including gestational diabetes, hypertension, cesarean delivery, low birth weight, ...
Computer methods and programs in biomedicine
Oct 31, 2024
BACKGROUND AND OBJECTIVE: Binge eating disorder (BED) is the most frequent eating disorder, often confused with obesity, with which it shares several characteristics. Early identification could enable targeted therapeutic interventions. In this study...
This study aims to demonstrate that demographics combined with biometrics can be used to predict obesity related chronic disease risk and produce a health risk score that outperforms body mass index (BMI)-the most commonly used biomarker for obesity....
BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a significant global health burden without established curative therapies. Early detection and preventive strategies are crucial for effective MASLD management. T...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.