AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Body Mass Index

Showing 31 to 40 of 229 articles

Clear Filters

Predictive modeling of lean body mass, appendicular lean mass, and appendicular skeletal muscle mass using machine learning techniques: A comprehensive analysis utilizing NHANES data and the Look AHEAD study.

PloS one
This study addresses the pressing need for improved methods to predict lean mass in adults, and in particular lean body mass (LBM), appendicular lean mass (ALM), and appendicular skeletal muscle mass (ASMM) for the early detection and management of s...

Prediction of the 10-year incidence of type 2 diabetes mellitus based on advanced anthropometric indices using machine learning methods in the Iranian population.

Diabetes research and clinical practice
BACKGROUND: Type 2 diabetes mellitus (T2DM) is a growing chronic disease that can lead to disability and early death. This study aimed to establish a predictive model for the 10-year incidence of T2DM based on novel anthropometric indices.

Predictive model for assessing malnutrition in elderly hospitalized cancer patients: A machine learning approach.

Geriatric nursing (New York, N.Y.)
BACKGROUND: Malnutrition is prevalent among elderly cancer patients. This study aims to develop a predictive model for malnutrition in hospitalized elderly cancer patients.

Precise risk-prediction model including arterial stiffness for new-onset atrial fibrillation using machine learning techniques.

Journal of clinical hypertension (Greenwich, Conn.)
Atrial fibrillation (AF) is the most common clinically significant cardiac arrhythmia and is an important risk factor for ischemic cerebrovascular events. This study used machine learning techniques to develop and validate a new risk prediction model...

Predicting Reduction Mammaplasty Total Resection Weight With Machine Learning.

Annals of plastic surgery
BACKGROUND: Machine learning (ML) is a form of artificial intelligence that has been used to create better predictive models in medicine. Using ML algorithms, we sought to create a predictive model for breast resection weight based on anthropometric ...

Obesity prediction: Novel machine learning insights into waist circumference accuracy.

Diabetes & metabolic syndrome
AIMS: This study aims to enhance the precision of obesity risk assessments by improving the accuracy of waist circumference predictions using machine learning techniques.

The early prediction of gestational diabetes mellitus by machine learning models.

BMC pregnancy and childbirth
BACKGROUND: We aimed to determine the best-performing machine learning (ML)-based algorithm for predicting gestational diabetes mellitus (GDM) with sociodemographic and obstetrics features in the pre-conceptional period.

Enhanced machine learning approaches for OSA patient screening: model development and validation study.

Scientific reports
Age, gender, body mass index (BMI), and mean heart rate during sleep were found to be risk factors for obstructive sleep apnea (OSA), and a variety of methods have been applied to predict the occurrence of OSA. This study aimed to develop and evaluat...

Machine Learning and Clinical Predictors of Mortality in Cardiac Arrest Patients: A Comprehensive Analysis.

Medical science monitor : international medical journal of experimental and clinical research
BACKGROUND Cardiac arrest (CA) is a global public health challenge. This study explored the predictors of mortality and their interactions utilizing machine learning algorithms and their related mortality odds among patients following CA. MATERIAL AN...

Development and evaluation of interpretable machine learning regressors for predicting femoral neck bone mineral density in elderly men using NHANES data.

Biomolecules & biomedicine
Osteoporotic femoral neck fractures (OFNFs) pose a significant orthopedic challenge in the elderly population, accounting for up to 40% of all osteoporotic fractures and leading to considerable health deterioration and increased mortality. In address...