AIMC Topic: Waist Circumference

Clear Filters Showing 1 to 10 of 24 articles

A supervised machine learning approach with feature selection for sex-specific biomarker prediction.

NPJ systems biology and applications
Biomarkers are crucial in aiding in disease diagnosis, prognosis, and treatment selection. Machine learning (ML) has emerged as an effective tool for identifying novel biomarkers and enhancing predictive modelling. However, sex-based bias in ML algor...

Surrogate markers of insulin resistance and coronary artery disease in type 2 diabetes: U-shaped TyG association and insights from machine learning integration.

Lipids in health and disease
BACKGROUND: Surrogate insulin resistance (IR) indices are simpler and more practical alternatives to insulin-based IR indicators for clinical use. This study explored the association between surrogate IR indices, including triglyceride-glucose index ...

Machine learning-based analyses of contributing factors for the development of hypertension: a comparative study.

Clinical and experimental hypertension (New York, N.Y. : 1993)
OBJECTIVES: Sufficient attention has not been given to machine learning (ML) models using longitudinal data for investigating important predictors of new onset of hypertension. We investigated the predictive ability of several ML models for the devel...

Identification and optimization of relevant factors for chronic kidney disease in abdominal obesity patients by machine learning methods: insights from NHANES 2005-2018.

Lipids in health and disease
BACKGROUND: The intake of dietary antioxidants and glycolipid metabolism are closely related to chronic kidney disease (CKD), particularly among individuals with abdominal obesity. Nevertheless, the cumulative effect of multiple comorbid risk factors...

Obesity prediction: Novel machine learning insights into waist circumference accuracy.

Diabetes & metabolic syndrome
AIMS: This study aims to enhance the precision of obesity risk assessments by improving the accuracy of waist circumference predictions using machine learning techniques.

The Association of Waist Circumference with the Prevalence and Survival of Digestive Tract Cancer in US Adults: A Population Study Based on Machine Learning Methods.

Computational and mathematical methods in medicine
AIMS: This paper aims to investigate the relationship of waist circumference (WC) with digestive tract cancer morbidity and mortality.

Estimated Artificial Neural Network Modeling of Maximal Oxygen Uptake Based on Multistage 10-m Shuttle Run Test in Healthy Adults.

International journal of environmental research and public health
We aimed to develop an artificial neural network (ANN) model to estimate the maximal oxygen uptake (VOmax) based on a multistage 10 m shuttle run test (SRT) in healthy adults. For ANN-based VOmax estimation, 118 healthy Korean adults (59 men and 59 w...

The Utility of Artificial Neural Networks for the Non-Invasive Prediction of Metabolic Syndrome Based on Personal Characteristics.

International journal of environmental research and public health
This study investigated the diagnostic accuracy of using an artificial neural network (ANN) for the prediction of metabolic syndrome (MetS) based on socioeconomic status and lifestyle factors. The data of 27,415 subjects who went through examinations...

Identification of Potential Type II Diabetes in a Large-Scale Chinese Population Using a Systematic Machine Learning Framework.

Journal of diabetes research
BACKGROUND: An estimated 425 million people globally have diabetes, accounting for 12% of the world's health expenditures, and the number continues to grow, placing a huge burden on the healthcare system, especially in those remote, underserved areas...