AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Breast Neoplasms

Showing 171 to 180 of 2031 articles

Clear Filters

Annotation-free deep learning algorithm trained on hematoxylin & eosin images predicts epithelial-to-mesenchymal transition phenotype and endocrine response in estrogen receptor-positive breast cancer.

Breast cancer research : BCR
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a m...

A Radiomic-Clinical Model of Contrast-Enhanced Mammography for Breast Cancer Biopsy Outcome Prediction.

Academic radiology
RATIONALE AND OBJECTIVES: In the USA over 1 million breast biopsies are performed annually. Approximately 9.6% diagnostic exams were given Breast Imaging Reporting and Data System (BI-RADS) ≥4A, most of which are 4A/4B. Contrast-enhanced mammography ...

Traditional versus modern approaches to screening mammography: a comparison of computer-assisted detection for synthetic 2D mammography versus an artificial intelligence algorithm for digital breast tomosynthesis.

Breast cancer research and treatment
PURPOSE: Traditional computer-assisted detection (CADe) algorithms were developed for 2D mammography, while modern artificial intelligence (AI) algorithms can be applied to 2D mammography and/or digital breast tomosynthesis (DBT). The objective is to...

AIScholar: An OpenFaaS-enhanced cloud platform for intelligent medical data analytics.

Computers in biology and medicine
This paper presents AIScholar, an intelligent research cloud platform developed based on artificial intelligence analysis methods and the OpenFaaS serverless framework, designed for intelligent analysis of clinical medical data with high scalability....

Raman Spectroscopy and Exosome-Based Machine Learning Predicts the Efficacy of Neoadjuvant Therapy for HER2-Positive Breast Cancer.

Analytical chemistry
Early prediction of the neoadjuvant therapy efficacy for HER2-positive breast cancer is crucial for personalizing treatment and enhancing patient outcomes. Exosomes, which play a role in tumor development and treatment response, are emerging as poten...

Effective BCDNet-based breast cancer classification model using hybrid deep learning with VGG16-based optimal feature extraction.

BMC medical imaging
PROBLEM: Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manma...

PRAF2 as a novel biomarker for breast cancer with machine learning and experimentation validation.

BMC cancer
BACKGROUND: Breast cancer (BC) is the most prevalent malignancy in women. Potential therapeutic targets for BC are of great significance. In our previous study, we found that prenylated rab acceptor 1 domain family member 2 (PRAF2) is an oncogene in ...

Rad4XCNN: A new agnostic method for post-hoc global explanation of CNN-derived features by means of Radiomics.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: In recent years, machine learning-based clinical decision support systems (CDSS) have played a key role in the analysis of several medical conditions. Despite their promising capabilities, the lack of transparency in AI mode...

Nationwide real-world implementation of AI for cancer detection in population-based mammography screening.

Nature medicine
Artificial intelligence (AI) in mammography screening has shown promise in retrospective evaluations, but few prospective studies exist. PRAIM is an observational, multicenter, real-world, noninferiority, implementation study comparing the performanc...