AIMC Topic: Radiotherapy, Adjuvant

Clear Filters Showing 1 to 10 of 16 articles

Machine learning identifies the association between second primary malignancies and postoperative radiotherapy in young-onset breast cancer patients.

PloS one
BACKGROUND: A second primary malignant tumor is one of the most important factors affecting the long-term survival of young women with breast cancer (YWBC). As one of the main treatments for breast cancer YWBC patients, postoperative radiotherapy (PO...

Automated contouring for breast cancer radiotherapy in the isocentric lateral decubitus position: a neural network-based solution for enhanced precision and efficiency.

Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
BACKGROUND: Adjuvant radiotherapy is essential for reducing local recurrence and improving survival in breast cancer patients, but it carries a risk of ischemic cardiac toxicity, which increases with heart exposure. The isocentric lateral decubitus p...

Identifying threshold of CT-defined muscle loss after radiotherapy for survival in oral cavity cancer using machine learning.

European radiology
OBJECTIVES: Muscle loss after radiotherapy is associated with poorer survival in patients with oral cavity squamous cell carcinoma (OCSCC). However, the threshold of muscle loss remains unclear. This study aimed to utilize explainable artificial inte...

Prognostic models for progression-free survival in atypical meningioma: Comparison of machine learning-based approach and the COX model in an Asian multicenter study.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Atypical meningiomas are prevalent intracranial tumors with varied prognoses and recurrence rates. The role of adjuvant radiotherapy (ART) in atypical meningiomas remains debated. This study aimed to develop and validate a pro...

Novel models based on machine learning to predict the prognosis of metaplastic breast cancer.

Breast (Edinburgh, Scotland)
BACKGROUND: Metaplastic breast cancer (MBC) is a rare and highly aggressive histological subtype of breast cancer. There remains a significant lack of precise predictive models available for use in clinical practice.

Interpretable deep learning insights: Unveiling the role of 1 Gy volume on lymphopenia after radiotherapy in breast cancer.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND: Lymphopenia is known for its significance on poor survivals in breast cancer patients. Considering full dosimetric data, this study aimed to develop and validate predictive models for lymphopenia after radiotherapy (RT) in breast cancer.

Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma.

BMC women's health
BACKGROUND: Surgery combined with radiotherapy substantially escalates the likelihood of encountering complications in early-stage cervical squamous cell carcinoma(ESCSCC). We aimed to investigate the feasibility of Deep-learning-based radiomics of i...

Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy.

Radiation oncology (London, England)
PURPOSE: To study the performance of a proposed deep learning-based autocontouring system in delineating organs at risk (OARs) in breast radiotherapy with a group of experts.

CT based automatic clinical target volume delineation using a dense-fully connected convolution network for cervical Cancer radiation therapy.

BMC cancer
BACKGROUND: It is very important to accurately delineate the CTV on the patient's three-dimensional CT image in the radiotherapy process. Limited to the scarcity of clinical samples and the difficulty of automatic delineation, the research of automat...