AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Breast Neoplasms

Showing 11 to 20 of 2030 articles

Clear Filters

Comparative analysis of diagnostic performance in mammography: A reader study on the impact of AI assistance.

PloS one
PURPOSE: This study evaluates the impact of artificial intelligence (AI) assistance on the diagnostic performance of radiologists with varying levels of experience in interpreting mammograms in a Malaysian tertiary referral center, particularly in wo...

Feasibility of virtual T2-weighted fat-saturated breast MRI images by convolutional neural networks.

European radiology experimental
BACKGROUND: Breast magnetic resonance imaging (MRI) protocols often include T2-weighted fat-saturated (T2w-FS) sequences, which support tissue characterization but significantly increase scan time. This study aims to evaluate whether a 2D-U-Net neura...

Evaluating Automated Tools for Lesion Detection on F Fluoroestradiol PET/CT Images and Assessment of Concordance with Standard-of-Care Imaging in Metastatic Breast Cancer.

Radiology. Imaging cancer
Purpose To evaluate two automated tools for detecting lesions on fluorine 18 (F) fluoroestradiol (FES) PET/CT images and assess concordance of F-FES PET/CT with standard diagnostic CT and/or F fluorodeoxyglucose (FDG) PET/CT in patients with breast c...

Predicting breast cancer prognosis based on a novel pathomics model through CHEK1 expression analysis using machine learning algorithms.

PloS one
BACKGROUND: Checkpoint kinase 1 (CHEK1) is often overexpressed in solid tumors. Nonetheless, the prognostic significance of CHEK1 in breast cancer (BrC) remains unclear. This study used pathomics leverages machine learning to predict BrC prognosis ba...

BCD-TransNet: Automatic breast cancer detection and classification using transfer learning approach.

Technology and health care : official journal of the European Society for Engineering and Medicine
Breast Cancer (BC) is a predominant form of cancer diagnosed in women and one of the deadliest diseases. The important cause of death owing to the cancer amongst women is BC. However, the existing ML techniques are very challenge evaluate the perform...

Integrating Machine Learning and Bulk and Single-Cell RNA Sequencing to Decipher Diverse Cell Death Patterns for Predicting the Prognosis of Neoadjuvant Chemotherapy in Breast Cancer.

International journal of molecular sciences
Breast cancer (BRCA) continues to pose a serious risk to women's health worldwide. Neoadjuvant chemotherapy (NAC) is a critical treatment strategy. Nevertheless, the heterogeneity in treatment outcomes necessitates the identification of reliable biom...

Hierarchical diagnosis of breast phyllodes tumors enabled by deep learning of ultrasound images: a retrospective multi-center study.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: Phyllodes tumors (PTs) are rare breast tumors with high recurrence rates, current methods relying on post-resection pathology often delay detection and require further surgery. We propose a deep-learning-based Phyllodes Tumors Hierarchical...

Deep learning-based computational approach for predicting ncRNAs-disease associations in metaplastic breast cancer diagnosis.

BMC cancer
Non-coding RNAs (ncRNAs) play a crucial role in breast cancer progression, necessitating advanced computational approaches for precise disease classification. This study introduces a Deep Reinforcement Learning (DRL)-based framework for predicting nc...