AIMC Topic: Cardiomyopathies

Clear Filters Showing 21 to 30 of 67 articles

Cine-cardiac magnetic resonance to distinguish between ischemic and non-ischemic cardiomyopathies: a machine learning approach.

European radiology
OBJECTIVE: This work aimed to derive a machine learning (ML) model for the differentiation between ischemic cardiomyopathy (ICM) and non-ischemic cardiomyopathy (NICM) on non-contrast cardiovascular magnetic resonance (CMR).

Development and validation of an electrocardiographic artificial intelligence model for detection of peripartum cardiomyopathy.

American journal of obstetrics & gynecology MFM
BACKGROUND: This study used electrocardiogram data in conjunction with artificial intelligence methods as a noninvasive tool for detecting peripartum cardiomyopathy.

ECG-only explainable deep learning algorithm predicts the risk for malignant ventricular arrhythmia in phospholamban cardiomyopathy.

Heart rhythm
BACKGROUND: Phospholamban (PLN) p.(Arg14del) variant carriers are at risk for development of malignant ventricular arrhythmia (MVA). Accurate risk stratification allows timely implantation of intracardiac defibrillators and is currently performed wit...

Strong Diagnostic Performance of Single Energy 256-row Multidetector Computed Tomography with Deep Learning Image Reconstruction in the Assessment of Myocardial Fibrosis.

Internal medicine (Tokyo, Japan)
Objective Although magnetic resonance imaging (MRI) is the gold standard for evaluating abnormal myocardial fibrosis and extracellular volume (ECV) of the left ventricular myocardium (LVM), a similar evaluation has recently become possible using comp...

Deep learning approach for automated segmentation of myocardium using bone scintigraphy single-photon emission computed tomography/computed tomography in patients with suspected cardiac amyloidosis.

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
BACKGROUND: We employed deep learning to automatically detect myocardial bone-seeking uptake as a marker of transthyretin cardiac amyloid cardiomyopathy (ATTR-CM) in patients undergoing 99mTc-pyrophosphate (PYP) or hydroxydiphosphonate (HDP) single-p...

EstimATTR: A Simplified, Machine-Learning-Based Tool to Predict the Risk of Wild-Type Transthyretin Amyloid Cardiomyopathy.

Journal of cardiac failure
BACKGROUND: Wild-type transthyretin amyloid cardiomyopathy (ATTRwt-CM), an increasingly recognized cause of heart failure (HF), often remains undiagnosed until later stages of the disease.

Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy.

American journal of obstetrics & gynecology MFM
BACKGROUND: Peripartum cardiomyopathy, one of the most fatal conditions during delivery, results in heart failure secondary to left ventricular systolic dysfunction. Left ventricular dysfunction can result in abnormalities in electrocardiography. How...

Heterogeneous treatment effects of coronary artery bypass grafting in ischemic cardiomyopathy: A machine learning causal forest analysis.

The Journal of thoracic and cardiovascular surgery
OBJECTIVES: We aim to evaluate the heterogeneous treatment effects of coronary artery bypass grafting in patients with ischemic cardiomyopathy and to identify a group of patients to have greater benefits from coronary artery bypass grafting compared ...

A Novel ECG-Based Deep Learning Algorithm to Predict Cardiomyopathy in Patients With Premature Ventricular Complexes.

JACC. Clinical electrophysiology
BACKGROUND: Premature ventricular complexes (PVCs) are prevalent and, although often benign, they may lead to PVC-induced cardiomyopathy. We created a deep-learning algorithm to predict left ventricular ejection fraction (LVEF) reduction in patients ...