AIMC Topic: Computational Biology

Clear Filters Showing 371 to 380 of 4397 articles

RNA-protein interaction prediction using network-guided deep learning.

Communications biology
Accurate computational determination of RNA-protein interactions remains challenging, particularly when encountering unknown RNAs and proteins. The limited number of RNAs and their flexibility constrained the effectiveness of the deep-learning models...

Identifying RNA-small Molecule Binding Sites Using Geometric Deep Learning with Language Models.

Journal of molecular biology
RNAs are emerging as promising therapeutic targets, yet identifying small molecules that bind to them remains a significant challenge in drug discovery. This underscores the crucial role of computational modeling in predicting RNA-small molecule bind...

Identification of biomarkers associated with phagocytosis regulatory factors in coronary artery disease using machine learning and network analysis.

Mammalian genome : official journal of the International Mammalian Genome Society
BACKGROUND: Coronary artery disease (CAD) is the leading cause of death worldwide, and aberrant phagocytosis may be involved in its development. Understanding this aspect may provide new avenues for prompt CAD diagnosis.

Artificial Intuition and accelerating the process of antimicrobial drug discovery.

Computers in biology and medicine
New drug development is a very challenging, expensive, and usually time-consuming process. This issue is very important with regard to antimicrobials, which are affected by the global issue of the development and spread of resistance. This framework ...

Interpretable AI for inference of causal molecular relationships from omics data.

Science advances
The discovery of molecular relationships from high-dimensional data is a major open problem in bioinformatics. Machine learning and feature attribution models have shown great promise in this context but lack causal interpretation. Here, we show that...

Probing the eukaryotic microbes of ruminants with a deep-learning classifier and comprehensive protein databases.

Genome research
Metagenomics, particularly genome-resolved metagenomics, have significantly deepened our understanding of microbes, illuminating their taxonomic and functional diversity and roles in ecology, physiology, and evolution. However, eukaryotic populations...

Using a multi-strain infectious disease model with physical information neural networks to study the time dependence of SARS-CoV-2 variants of concern.

PLoS computational biology
With the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its increasing adaptation to humans, several variants of concern (VOCs) and variants of interest (VOIs) have been identified since late 2020. These include...

Simpler Protein Domain Identification Using Spectral Clustering.

Proteins
The decomposition of a biomolecular complex into domains is an important step to investigate biological functions and ease structure determination. A successful approach to do so is the SPECTRUS algorithm, which provides a segmentation based on spect...

A Perspective on Artificial Intelligence for Molecular Pathologists.

The Journal of molecular diagnostics : JMD
The widespread adoption of next-generation sequencing technology in molecular pathology has enabled us to interrogate the genome as never before. The huge quantities of data generated by sequencing, the enormous complexity of human and microbial gene...

PhageDPO: A machine-learning based computational framework for identifying phage depolymerases.

Computers in biology and medicine
Bacteriophages (phages) are the most predominant and genetically diverse biological entities on Earth. Phages are viruses that infect bacteria and encode numerous proteins with potential biotechnological application. However, most phage-encoded prote...