AIMC Topic: Contrast Media

Clear Filters Showing 91 to 100 of 546 articles

Quality assessment of expedited AI generated reformatted images for ED acquired CT abdomen and pelvis imaging.

Abdominal radiology (New York)
PURPOSE: Retrospectively compare image quality, radiologist diagnostic confidence, and time for images to reach PACS for contrast enhanced abdominopelvic CT examinations created on the scanner console by technologists versus those generated automatic...

The application value of support vector machine model based on multimodal MRI in predicting IDH-1mutation and Ki-67 expression in glioma.

BMC medical imaging
PURPOSE: To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1...

An hetero-modal deep learning framework for medical image synthesis applied to contrast and non-contrast MRI.

Biomedical physics & engineering express
Some pathologies such as cancer and dementia require multiple imaging modalities to fully diagnose and assess the extent of the disease. Magnetic resonance imaging offers this kind of polyvalence, but examinations take time and can require contrast a...

Contrast-Enhanced Computed Tomography-Based Machine Learning Radiomics Predicts IDH1 Expression and Clinical Prognosis in Head and Neck Squamous Cell Carcinoma.

Academic radiology
RATIONALE AND OBJECTIVES: Isocitrate dehydrogenase 1 (IDH1) is a potential therapeutic target across various tumor types. Here, we aimed to devise a radiomic model capable of predicting the IDH1 expression levels in patients with head and neck squamo...

Predicting Late Gadolinium Enhancement of Acute Myocardial Infarction in Contrast-Free Cardiac Cine MRI Using Deep Generative Learning.

Circulation. Cardiovascular imaging
BACKGROUND: Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is a standard technique for diagnosing myocardial infarction (MI), which, however, poses risks due to gadolinium contrast usage. Techniques enabling MI assessment based on...

Training robust T1-weighted magnetic resonance imaging liver segmentation models using ensembles of datasets with different contrast protocols and liver disease etiologies.

Scientific reports
Image segmentation of the liver is an important step in treatment planning for liver cancer. However, manual segmentation at a large scale is not practical, leading to increasing reliance on deep learning models to automatically segment the liver. Th...

Integrating artificial intelligence (S-Detect software) and contrast-enhanced ultrasound for enhanced diagnosis of thyroid nodules: A comprehensive evaluation study.

Journal of clinical ultrasound : JCU
PURPOSE: This study aims to assess the diagnostic efficacy of Korean Thyroid imaging reporting and data system (K-TIRADS), S-Detect software and contrast-enhanced ultrasound (CEUS) when employed individually, as well as their combined application, fo...

Machine learning analysis of contrast-enhanced ultrasound (CEUS) for the diagnosis of acute graft dysfunction in kidney transplant recipients.

Medical ultrasonography
AIM: The aim of the study was to develop machine learning algorithms (MLA) for diagnosing acute graft dysfunction (AGD) in kidney transplant recipients based on contrast-enhanced ultrasound (CEUS) analysis of the graft.Materials and methods: This pro...