AIMC Topic: Contrast Media

Clear Filters Showing 91 to 100 of 565 articles

Predictive performance of machine learning models for kidney complications following coronary interventions: a systematic review and meta-analysis.

International urology and nephrology
BACKGROUND: Acute kidney injury (AKI) and contrast-induced nephropathy (CIN) are common complications following percutaneous coronary intervention (PCI) or coronary angiography (CAG), presenting significant clinical challenges. Machine learning (ML) ...

Machine Learning Differentiates Between Benign and Malignant Parotid Tumors With Contrast-Enhanced Ultrasound Features.

Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons
BACKGROUND: Contrast-enhanced ultrasound (CEUS) is frequently used to distinguish benign parotid tumors (BPTs) from malignant parotid tumors (MPTs). Introducing machine learning may enable clinicians to preoperatively diagnose parotid tumors precisel...

Prediction of hepatocellular carcinoma response to radiation segmentectomy using an MRI-based machine learning approach.

Abdominal radiology (New York)
PURPOSE: To evaluate the value of pre-treatment MRI-based radiomics in patients with hepatocellular carcinoma (HCC) for the prediction of response to Yttrium 90 radiation segmentectomy.

Deep-learning reconstruction enhances image quality of Adamkiewicz Artery in low-keV dual-energy CT.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Low-keV virtual monoenergetic images (VMIs) of dual-energy computed tomography (CT) enhances iodine contrast for detecting small arteries like the Adamkiewicz artery (AKA), but image noise can be problematic. Deep-learning image reconstru...

TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs.

Medical image analysis
Characterization of breast parenchyma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Existing quantitative approaches, like radiomics and deep learning ...

Deep convolutional neural network for automatic segmentation and classification of jaw tumors in contrast-enhanced computed tomography images.

International journal of oral and maxillofacial surgery
The purpose of this study was to evaluate the performance of convolutional neural network (CNN)-based image segmentation models for segmentation and classification of benign and malignant jaw tumors in contrast-enhanced computed tomography (CT) image...