AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Databases, Pharmaceutical

Showing 11 to 20 of 96 articles

Clear Filters

A multi-conformational virtual screening approach based on machine learning targeting PI3Kγ.

Molecular diversity
Nowadays, more and more attention has been attracted to develop selective PI3Kγ inhibitors, but the unique structural features of PI3Kγ protein make it a very big challenge. In the present study, a virtual screening strategy based on machine learning...

Machine learning models to select potential inhibitors of acetylcholinesterase activity from SistematX: a natural products database.

Molecular diversity
Alzheimer's disease is the most common form of dementia, representing 60-70% of dementia cases. The enzyme acetylcholinesterase (AChE) cleaves the ester bonds in acetylcholine and plays an important role in the termination of acetylcholine activity a...

Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review.

Molecular diversity
Artificial intelligence (AI) renders cutting-edge applications in diverse sectors of society. Due to substantial progress in high-performance computing, the development of superior algorithms, and the accumulation of huge biological and chemical data...

Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors.

International journal of molecular sciences
In the last year, the COVID-19 pandemic has highly affected the lifestyle of the world population, encouraging the scientific community towards a great effort on studying the infection molecular mechanisms. Several vaccine formulations are nowadays a...

Ensemble learning application to discover new trypanothione synthetase inhibitors.

Molecular diversity
Trypanosomatid-caused diseases are among the neglected infectious diseases with the highest disease burden, affecting about 27 million people worldwide and, in particular, socio-economically vulnerable populations. Trypanothione synthetase (TryS) is ...

Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning.

International journal of molecular sciences
The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different ...

Classification of beta-site amyloid precursor protein cleaving enzyme 1 inhibitors by using machine learning methods.

Chemical biology & drug design
The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a transmembrane aspartyl-protease, that cleaves amyloid precursor protein (APP) at the β-site. The sequential proteolytic cleavage of APP, first by β-secretase and then by γ-secreta...

De novo generation of dual-target ligands using adversarial training and reinforcement learning.

Briefings in bioinformatics
Artificial intelligence, such as deep generative methods, represents a promising solution to de novo design of molecules with the desired properties. However, generating new molecules with biological activities toward two specific targets remains an ...

IFPTML Mapping of Drug Graphs with Protein and Chromosome Structural Networks vs. Pre-Clinical Assay Information for Discovery of Antimalarial Compounds.

International journal of molecular sciences
The parasite species of genus causes Malaria, which remains a major global health problem due to parasite resistance to available Antimalarial drugs and increasing treatment costs. Consequently, computational prediction of new Antimalarial compounds...