AIMC Topic: Diabetes Complications

Clear Filters Showing 31 to 40 of 41 articles

Using local lexicalized rules to identify heart disease risk factors in clinical notes.

Journal of biomedical informatics
Heart disease is the leading cause of death globally and a significant part of the human population lives with it. A number of risk factors have been recognized as contributing to the disease, including obesity, coronary artery disease (CAD), hyperte...

The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs.

Journal of biomedical informatics
This paper describes a supervised machine learning approach for identifying heart disease risk factors in clinical text, and assessing the impact of annotation granularity and quality on the system's ability to recognize these risk factors. We utiliz...

Annotating risk factors for heart disease in clinical narratives for diabetic patients.

Journal of biomedical informatics
The 2014 i2b2/UTHealth natural language processing shared task featured a track focused on identifying risk factors for heart disease (specifically, Cardiac Artery Disease) in clinical narratives. For this track, we used a "light" annotation paradigm...

Applying a novel combination of techniques to develop a predictive model for diabetes complications.

PloS one
Among the many related issues of diabetes management, its complications constitute the main part of the heavy burden of this disease. The aim of this paper is to develop a risk advisor model to predict the chances of diabetes complications according ...

Development and validation of a convenient dementia risk prediction tool for diabetic population: A large and longitudinal machine learning cohort study.

Journal of affective disorders
BACKGROUND: Diabetes mellitus has been shown to increase the risk of dementia, with diabetic patients demonstrating twice the dementia incidence rate of non-diabetic populations. We aimed to develop and validate a novel machine learning-based dementi...

A machine learning-based risk prediction model for diabetic oral ulceration.

BMC oral health
BACKGROUND: Diabetic oral ulceration (DOU) is a prevalent and debilitating complication among diabetic patients, significantly impairing their quality of life and imposing substantial economic burdens. Studies indicate that over 90% of diabetic patie...

Mitochondrial mt12361A>G increased risk of metabolic dysfunction-associated steatotic liver disease among non-diabetes.

World journal of gastroenterology
BACKGROUND: Insulin resistance, lipotoxicity, and mitochondrial dysfunction contribute to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Mitochondrial dysfunction impairs oxidative phosphorylation and increases ...

Machine Learning Identifies Metabolic Dysfunction-Associated Steatotic Liver Disease in Patients With Diabetes Mellitus.

The Journal of clinical endocrinology and metabolism
CONTEXT: The presence of metabolic dysfunction-associated steatotic liver disease (MASLD) in patients with diabetes mellitus (DM) is associated with a high risk of cardiovascular disease, but is often underdiagnosed.

Predicting complications of diabetes mellitus using advanced machine learning algorithms.

Journal of the American Medical Informatics Association : JAMIA
OBJECTIVE: We sought to predict if patients with type 2 diabetes mellitus (DM2) would develop 10 selected complications. Accurate prediction of complications could help with more targeted measures that would prevent or slow down their development.