AIMC Topic: Echocardiography

Clear Filters Showing 11 to 20 of 404 articles

Self-supervised learning for label-free segmentation in cardiac ultrasound.

Nature communications
Segmentation and measurement of cardiac chambers from ultrasound is critical, but laborious and poorly reproducible. Neural networks can assist, but supervised approaches require the same problematic manual annotations. We build a pipeline for self-s...

ProtoASNet: Comprehensive evaluation and enhanced performance with uncertainty estimation for aortic stenosis classification in echocardiography.

Medical image analysis
Aortic stenosis (AS) is a prevalent heart valve disease that requires accurate and timely diagnosis for effective treatment. Current methods for automated AS severity classification rely on black-box deep learning techniques, which suffer from a low ...

AI-enhanced guidance demonstrated improvement in novices' Apical-4-chamber and Apical-5-chamber views.

BMC medical education
INTRODUCTION: Artificial Intelligence (AI) modules might simplify the complexities of cardiac ultrasound (US) training by offering real-time, step-by-step guidance on probe manipulation for high-quality diagnostic imaging. This study investigates rea...

Value of Artificial Intelligence for Enhancing Suspicion of Cardiac Amyloidosis Using Electrocardiography and Echocardiography: A Narrative Review.

Journal of the American Heart Association
Nonspecific symptoms and other diagnostic challenges lead to underdiagnosis of cardiac amyloidosis (CA). Artificial intelligence (AI) could help address these challenges, but a summary of the performance of these tools is lacking. This narrative revi...

Change of Heart: Can Artificial Intelligence Transform Infective Endocarditis Management?

Pathogens (Basel, Switzerland)
Artificial intelligence (AI) has emerged as a promising adjunct in the diagnosis and management of infective endocarditis (IE), a disease characterized by diagnostic complexity and significant morbidity. Machine learning (ML) models such as SABIER an...

A novel intelligent grade classification architecture for Patent Foramen Ovale by Contrast Transthoracic Echocardiography based on deep learning.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Patent foramen ovale (PFO) is one of the main causes of ischemic stroke. Due to the complex characteristics of contrast transthoracic echocardiography (cTTE), PFO classification is time-consuming and laborious in clinical practice. For this reason, a...

The Year in Perioperative Echocardiography: Selected Highlights from 2024.

Journal of cardiothoracic and vascular anesthesia
This article is the ninth of an annual series reviewing the research highlights of the year pertaining to the subspecialty of perioperative echocardiography for the Journal of Cardiothoracic and Vascular Anesthesia. The authors thank the editor-in-ch...

Automated generation of echocardiography reports using artificial intelligence: a novel approach to streamlining cardiovascular diagnostics.

The international journal of cardiovascular imaging
Accurate interpretation of echocardiography measurements is essential for diagnosing cardiovascular diseases and guiding clinical management. The emergence of large language models (LLMs) like ChatGPT presents a novel opportunity to automate the gene...

Artificial Intelligence-Enhanced Analysis of Echocardiography-Based Radiomic Features for Myocardial Hypertrophy Detection and Etiology Differentiation.

Circulation. Cardiovascular imaging
BACKGROUND: While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-bas...