AIMC Topic: Amyloidosis

Clear Filters Showing 1 to 10 of 25 articles

Value of Artificial Intelligence for Enhancing Suspicion of Cardiac Amyloidosis Using Electrocardiography and Echocardiography: A Narrative Review.

Journal of the American Heart Association
Nonspecific symptoms and other diagnostic challenges lead to underdiagnosis of cardiac amyloidosis (CA). Artificial intelligence (AI) could help address these challenges, but a summary of the performance of these tools is lacking. This narrative revi...

Artificial Intelligence-Enhanced Analysis of Echocardiography-Based Radiomic Features for Myocardial Hypertrophy Detection and Etiology Differentiation.

Circulation. Cardiovascular imaging
BACKGROUND: While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-bas...

Detection of cardiac amyloidosis using machine learning on routine echocardiographic measurements.

Open heart
BACKGROUND: Cardiac amyloidosis (CA) is an underdiagnosed, progressive and lethal disease. Machine learning applied to common measurements derived from routine echocardiogram studies can inform suspicion of CA.

A machine learning prediction model for Cardiac Amyloidosis using routine blood tests in patients with left ventricular hypertrophy.

Scientific reports
Current approaches for cardiac amyloidosis (CA) identification are time-consuming, labor-intensive, and present challenges in sensitivity and accuracy, leading to limited treatment efficacy and poor prognosis for patients. In this retrospective study...

Automated Neural Architecture Search for Cardiac Amyloidosis Classification from [18F]-Florbetaben PET Images.

Journal of imaging informatics in medicine
Medical image classification using convolutional neural networks (CNNs) is promising but often requires extensive manual tuning for optimal model definition. Neural architecture search (NAS) automates this process, reducing human intervention signifi...

Deep Learning Virtual Contrast-Enhanced T1 Mapping for Contrast-Free Myocardial Extracellular Volume Assessment.

Journal of the American Heart Association
BACKGROUND: The acquisition of contrast-enhanced T1 maps to calculate extracellular volume (ECV) requires contrast agent administration and is time consuming. This study investigates generative adversarial networks for contrast-free, virtual extracel...

An analysis regarding the article "Artificial intelligence-enhanced electrocardiogram for the diagnosis of cardiac amyloidosis: A systemic review and meta-analysis".

Current problems in cardiology
Cardiac Amyloidosis (CA) occurs when misfolded proteins accumulate in the heart muscle, leading to restrictive cardiomyopathy and possibly escalating to heart failure, impaired conduction system function, and sudden cardiac arrest. It is a significan...

Artificial intelligence-enhanced electrocardiogram for the diagnosis of cardiac amyloidosis: A systemic review and meta-analysis.

Current problems in cardiology
BACKGROUND: Diagnosis of cardiac amyloidosis (CA) is often delayed due to variability in clinical presentation. The electrocardiogram (ECG) is one of the most common and widely available tools for assessing cardiovascular diseases. Artificial intelli...

Virtual birefringence imaging and histological staining of amyloid deposits in label-free tissue using autofluorescence microscopy and deep learning.

Nature communications
Systemic amyloidosis involves the deposition of misfolded proteins in organs/tissues, leading to progressive organ dysfunction and failure. Congo red is the gold-standard chemical stain for visualizing amyloid deposits in tissue, showing birefringenc...