Cognitive, affective & behavioral neuroscience
Feb 18, 2025
Previous research has demonstrated that machine learning (ML) could not effectively decode passive observation of neutral versus pain photographs by using electroencephalogram (EEG) data. Consequently, the present study explored whether active viewin...
Alcoholism, a progressive loss of control over alcohol consumption, deteriorates mental and physical health over time. Automatic alcoholism detection can aid in early interventions and timely corrective actions. For this purpose, electroencephalogram...
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition common in teenagers across the globe. Neuroimaging and Machine Learning (ML) advancements have revolutionized its diagnosis and treatment approaches. Although, the rese...
OBJECTIVE: The Functional Seizures Likelihood Score (FSLS) is a supervised machine learning-based diagnostic score that was developed to differentiate functional seizures (FS) from epileptic seizures (ES). In contrast to this targeted approach, large...
This study explores the link between the emotion "guilt" and human EEG data, and investigates the influence of gender differences on the expression of guilt and neutral emotions in response to visual stimuli. Additionally, the stimuli used in the stu...
In order to detect epileptic spikes, this paper suggests a deep learning architecture that blends 1D residual convolutional neural networks (1D-ResCNN) with a hybrid optimization strategy. The Layer-wise Adaptive Moments (LAMB) and AdamW algorithms h...
Timely identification of Parkinson's disease and schizophrenia is crucial for the effective management and enhancement of patients' quality of life. The utilization of electroencephalogram (EEG) monitoring applications has proven instrumental in diag...
. Brain-computer interfaces (BCIs) face a significant challenge due to variability in electroencephalography (EEG) signals across individuals. While recent approaches have focused on standardizing input signal distributions, we propose that aligning ...
. Steady-state visual evoked potential-based brain-computer interfaces (SSVEP-BCIs) have gained significant attention due to their simplicity, high signal to noise ratio and high information transfer rates (ITRs). Currently, accurate detection is a c...
Assistive robots can be developed to restore or provide more autonomy for individuals with motor impairments. In particular, power wheelchairs can compensate lower-limb impairments, while robotic manipulators can compensate upper-limbs impairments. R...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.