BACKGROUND: The gold standard to diagnose fatty liver is pathology. Recently, image-based artificial intelligence (AI) has been found to have high diagnostic performance. We systematically reviewed studies of image-based AI in the diagnosis of fatty ...
BACKGROUND: Histopathology remains the gold standard for diagnosing and staging metabolic dysfunction-associated steatotic liver disease (MASLD). The feasibility of studying MASLD progression in electronic medical records based on histological featur...
Ultrasound imaging is a widely used technique for fatty liver diagnosis as it is practically affordable and can be quickly deployed by using suitable devices. When it is applied to a patient, multiple images of the targeted tissues are produced. We p...
OBJECTIVES: Steatotic liver disease is the most frequent chronic liver disease worldwide. Ultrasonography (US) is commonly employed for the assessment and diagnosis. Few information is available on the possible use of artificial intelligence (AI) to ...
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe liver disease characterized by lipid accumulation, inflammation and fibrosis. The development of MASH therapies has been hindered by the lack of human translational models and limita...
Unenhanced CT scans exhibit high specificity in detecting moderate-to-severe hepatic steatosis. Even though many CTs are scanned from health screening and various diagnostic contexts, their potential for hepatic steatosis detection has largely remain...
BACKGROUND AND AIMS: Identifying patients with steatotic liver disease who are at a high risk of developing HCC remains challenging. We present a deep learning (DL) model to predict HCC development using hematoxylin and eosin-stained whole-slide imag...
The Journal of clinical endocrinology and metabolism
38330228
CONTEXT: The presence of metabolic dysfunction-associated steatotic liver disease (MASLD) in patients with diabetes mellitus (DM) is associated with a high risk of cardiovascular disease, but is often underdiagnosed.