AIMC Topic: Fractures, Compression

Clear Filters Showing 11 to 20 of 52 articles

Automatic AI tool for opportunistic screening of vertebral compression fractures on chest frontal radiographs: A multicenter study.

Bone
Vertebral compression fractures (VCFs) are the most common type of osteoporotic fractures, yet they are often clinically silent and undiagnosed. Chest frontal radiographs (CFRs) are frequently used in clinical practice and a portion of VCFs can be de...

Machine learning models based on CT radiomics features for distinguishing benign and malignant vertebral compression fractures in patients with malignant tumors.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Radiomics has become an important tool for distinguishing benign and malignant vertebral compression fractures (VCFs). It is more clinically significant to concentrate on patients who have malignant tumors and differentiate between benign...

Evaluation and analysis of risk factors for adverse events of the fractured vertebra post-percutaneous kyphoplasty: a retrospective cohort study using multiple machine learning models.

Journal of orthopaedic surgery and research
BACKGROUND: Adverse events of the fractured vertebra (AEFV) post-percutaneous kyphoplasty (PKP) can lead to recurrent pain and neurological damage, which considerably affect the prognosis of patients and the quality of life. This study aimed to analy...

The Potential Clinical Utility of an Artificial Intelligence Model for Identification of Vertebral Compression Fractures in Chest Radiographs.

Journal of the American College of Radiology : JACR
PURPOSE: To assess the ability of the Annalise Enterprise CXR Triage Trauma (Annalise AI Pty Ltd, Sydney, NSW, Australia) artificial intelligence model to identify vertebral compression fractures on chest radiographs and its potential to address undi...

Deep learning application of vertebral compression fracture detection using mask R-CNN.

Scientific reports
Vertebral compression fractures (VCFs) of the thoracolumbar spine are commonly caused by osteoporosis or result from traumatic events. Early diagnosis of vertebral compression fractures can prevent further damage to patients. When assessing these fra...

Predicting Secondary Vertebral Compression Fracture After Vertebral Augmentation via CT-Based Machine Learning Radiomics-Clinical Model.

Academic radiology
RATIONALE AND OBJECTIVES: Secondary vertebral compression fractures (SVCF) are very common in patients after vertebral augmentation (VA). The aim of this study was to establish a radiomic-based model to predict SVCF and specify appropriate treatment ...

Fully Automatic Deep Learning Model for Spine Refracture in Patients with OVCF: A Multi-Center Study.

Orthopaedic surgery
BACKGROUND: The reaserch of artificial intelligence (AI) model for predicting spinal refracture is limited to bone mineral density, X-ray and some conventional laboratory indicators, which has its own limitations. Besides, it lacks specific indicator...

Detection and Localization of Spine Disorders from Plain Radiography.

Journal of imaging informatics in medicine
Spine disorders can cause severe functional limitations, including back pain, decreased pulmonary function, and increased mortality risk. Plain radiography is the first-line imaging modality to diagnose suspected spine disorders. Nevertheless, radiog...

Predicting osteoporotic fractures post-vertebroplasty: a machine learning approach with a web-based calculator.

BMC surgery
PURPOSE: The aim of this study was to develop and validate a machine learning (ML) model for predicting the risk of new osteoporotic vertebral compression fracture (OVCF) in patients who underwent percutaneous vertebroplasty (PVP) and to create a use...