AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Glasgow Coma Scale

Showing 21 to 30 of 31 articles

Clear Filters

A data-driven artificial intelligence model for remote triage in the prehospital environment.

PloS one
In a mass casualty incident, the factors that determine the survival rate of injured patients are diverse, but one of the key factors is the time for triage. Additionally, the main factor that determines the time of triage is the number of medical pe...

Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units.

Scientific reports
Unplanned extubation (UE) can be associated with fatal outcome; however, an accurate model for predicting the mortality of UE patients in intensive care units (ICU) is lacking. Therefore, we aim to compare the performances of various machine learning...

Prediction of cervical spine injury in young pediatric patients: an optimal trees artificial intelligence approach.

Journal of pediatric surgery
BACKGROUND: Cervical spine injuries (CSI) are a major concern in young pediatric trauma patients. The consequences of missed injuries and difficulties in injury clearance for non-verbal patients have led to a tendency to image young children. Imaging...

Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine.

EBioMedicine
BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is a devastating disease with high mortality rate. This study aimed to predict hematoma expansion in spontaneous ICH from routinely available variables by using support vector machine (SVM) metho...

Detection of Brain Activation in Unresponsive Patients with Acute Brain Injury.

The New England journal of medicine
BACKGROUND: Brain activation in response to spoken motor commands can be detected by electroencephalography (EEG) in clinically unresponsive patients. The prevalence and prognostic importance of a dissociation between commanded motor behavior and bra...

Anomaly Detection of Moderate Traumatic Brain Injury Using Auto-Regularized Multi-Instance One-Class SVM.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Detection and quantification of functional deficits due to moderate traumatic brain injury (mTBI) is crucial for clinical decision-making and timely commencement of functional therapy. In this work, we explore magnetoencephalography (MEG) based funct...

Machine learning-based dynamic mortality prediction after traumatic brain injury.

Scientific reports
Our aim was to create simple and largely scalable machine learning-based algorithms that could predict mortality in a real-time fashion during intensive care after traumatic brain injury. We performed an observational multicenter study including adul...

Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury.

Journal of clinical epidemiology
OBJECTIVE: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury.