AIMC Topic: Glioblastoma

Clear Filters Showing 51 to 60 of 213 articles

A comprehensive survey on the use of deep learning techniques in glioblastoma.

Artificial intelligence in medicine
Glioblastoma, characterized as a grade 4 astrocytoma, stands out as the most aggressive brain tumor, often leading to dire outcomes. The challenge of treating glioblastoma is exacerbated by the convergence of genetic mutations and disruptions in gene...

Automated glioblastoma patient classification using hypoxia levels measured through magnetic resonance images.

BMC neuroscience
INTRODUCTION: The challenge of treating Glioblastoma (GBM) tumors is due to various mechanisms that make the tumor resistant to radiation therapy. One of these mechanisms is hypoxia, and therefore, determining the level of hypoxia can improve treatme...

Two-headed UNetEfficientNets for parallel execution of segmentation and classification of brain tumors: incorporating postprocessing techniques with connected component labelling.

Journal of cancer research and clinical oncology
PURPOSE: The purpose of this study is to develop accurate and automated detection and segmentation methods for brain tumors, given their significant fatality rates, with aggressive malignant tumors like Glioblastoma Multiforme (GBM) having a five-yea...

Automatic brain-tumor diagnosis using cascaded deep convolutional neural networks with symmetric U-Net and asymmetric residual-blocks.

Scientific reports
The use of various kinds of magnetic resonance imaging (MRI) techniques for examining brain tissue has increased significantly in recent years, and manual investigation of each of the resulting images can be a time-consuming task. This paper presents...

Predictive Model to Identify the Long Time Survivor in Patients with Glioblastoma: A Cohort Study Integrating Machine Learning Algorithms.

Journal of molecular neuroscience : MN
We aimed to develop and validate a predictive model for identifying long-term survivors (LTS) among glioblastoma (GB) patients, defined as those with an overall survival (OS) of more than 3 years. A total of 293 GB patients from CGGA and 169 from TCG...

Application of Machine Learning for Classification of Brain Tumors: A Systematic Review and Meta-Analysis.

World neurosurgery
BACKGROUND: Classifying brain tumors accurately is crucial for treatment and prognosis. Machine learning (ML) shows great promise in improving tumor classification accuracy. This study evaluates ML algorithms for differentiating various brain tumor t...

How does deep learning/machine learning perform in comparison to radiologists in distinguishing glioblastomas (or grade IV astrocytomas) from primary CNS lymphomas?: a meta-analysis and systematic review.

Clinical radiology
BACKGROUND: Several studies have been published comparing deep learning (DL)/machine learning (ML) to radiologists in differentiating PCNSLs from GBMs with equivocal results. We aimed to perform this meta-analysis to evaluate the diagnostic accuracy ...

Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques.

Scientific reports
In this study, we utilized data from the Surveillance, Epidemiology, and End Results (SEER) database to predict the glioblastoma patients' survival outcomes. To assess dataset skewness and detect feature importance, we applied Pearson's second coeffi...

Novel Operation Mechanism and Multifunctional Applications of Bubble Microrobots.

Advanced healthcare materials
Microrobots have emerged as powerful tools for manipulating particles, cells, and assembling biological tissue structures at the microscale. However, achieving precise and flexible operation of arbitrary-shaped microstructures in 3D space remains a c...

Added value of dynamic contrast-enhanced MR imaging in deep learning-based prediction of local recurrence in grade 4 adult-type diffuse gliomas patients.

Scientific reports
Local recurrences in patients with grade 4 adult-type diffuse gliomas mostly occur within residual non-enhancing T2 hyperintensity areas after surgical resection. Unfortunately, it is challenging to distinguish non-enhancing tumors from edema in the ...