AIMC Topic: Heart Disease Risk Factors

Clear Filters Showing 21 to 30 of 62 articles

Exploring machine learning strategies for predicting cardiovascular disease risk factors from multi-omic data.

BMC medical informatics and decision making
BACKGROUND: Machine learning (ML) classifiers are increasingly used for predicting cardiovascular disease (CVD) and related risk factors using omics data, although these outcomes often exhibit categorical nature and class imbalances. However, little ...

Deep learning approach for cardiovascular disease risk stratification and survival analysis on a Canadian cohort.

The international journal of cardiovascular imaging
The quantification of carotid plaque has been routinely used to predict cardiovascular risk in cardiovascular disease (CVD) and coronary artery disease (CAD). To determine how well carotid plaque features predict the likelihood of CAD and cardiovascu...

Prediction of cardiovascular risk factors from retinal fundus photographs: Validation of a deep learning algorithm in a prospective non-interventional study in Kenya.

Diabetes, obesity & metabolism
AIM: Hypertension and diabetes mellitus (DM) are major causes of morbidity and mortality, with growing burdens in low-income countries where they are underdiagnosed and undertreated. Advances in machine learning may provide opportunities to enhance d...

Deep Learning to Estimate Cardiovascular Risk From Chest Radiographs : A Risk Prediction Study.

Annals of internal medicine
BACKGROUND: Guidelines for primary prevention of atherosclerotic cardiovascular disease (ASCVD) recommend a risk calculator (ASCVD risk score) to estimate 10-year risk for major adverse cardiovascular events (MACE). Because the necessary inputs are o...

Artificial intelligence in preventive cardiology.

Progress in cardiovascular diseases
Artificial intelligence (AI) is a field of study that strives to replicate aspects of human intelligence into machines. Preventive cardiology, a subspeciality of cardiovascular (CV) medicine, aims to target and mitigate known risk factors for CV dise...

Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review.

BMC medicine
BACKGROUND: A comprehensive overview of artificial intelligence (AI) for cardiovascular disease (CVD) prediction and a screening tool of AI models (AI-Ms) for independent external validation are lacking. This systematic review aims to identify, descr...

Heart disease risk factors detection from electronic health records using advanced NLP and deep learning techniques.

Scientific reports
Heart disease remains the major cause of death, despite recent improvements in prediction and prevention. Risk factor identification is the main step in diagnosing and preventing heart disease. Automatically detecting risk factors for heart disease i...

Can deep learning on retinal images augment known risk factors for cardiovascular disease prediction in diabetes? A prospective cohort study from the national screening programme in Scotland.

International journal of medical informatics
AIMS: This study's objective was to evaluate whether deep learning (DL) on retinal photographs from a diabetic retinopathy screening programme improve prediction of incident cardiovascular disease (CVD).