AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Hospital Mortality

Showing 151 to 160 of 323 articles

Clear Filters

Machine-learning-based COVID-19 mortality prediction model and identification of patients at low and high risk of dying.

Critical care (London, England)
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-Cov2 virus has become the greatest health and controversial issue for worldwide nations. It is associated with different clinical manifestations and a high mortality rate...

Uncertainty-Gated Stochastic Sequential Model for EHR Mortality Prediction.

IEEE transactions on neural networks and learning systems
Electronic health records (EHRs) are characterized as nonstationary, heterogeneous, noisy, and sparse data; therefore, it is challenging to learn the regularities or patterns inherent within them. In particular, sparseness caused mostly by many missi...

Comparing COVID-19 risk factors in Brazil using machine learning: the importance of socioeconomic, demographic and structural factors.

Scientific reports
The COVID-19 pandemic continues to have a devastating impact on Brazil. Brazil's social, health and economic crises are aggravated by strong societal inequities and persisting political disarray. This complex scenario motivates careful study of the c...

Deep learning to predict long-term mortality in patients requiring 7 days of mechanical ventilation.

PloS one
BACKGROUND: Among patients with acute respiratory failure requiring prolonged mechanical ventilation, tracheostomies are typically placed after approximately 7 to 10 days. Yet half of patients admitted to the intensive care unit receiving tracheostom...

Machine learning enhances the performance of short and long-term mortality prediction model in non-ST-segment elevation myocardial infarction.

Scientific reports
Machine learning (ML) has been suggested to improve the performance of prediction models. Nevertheless, research on predicting the risk in patients with acute myocardial infarction (AMI) has been limited and showed inconsistency in the performance of...

Machine ​learning algorithms for claims data-based prediction of in-hospital mortality in patients with heart failure.

ESC heart failure
AIMS: Models predicting mortality in heart failure (HF) patients are often limited with regard to performance and applicability. The aim of this study was to develop a reliable algorithm to compute expected in-hospital mortality rates in HF cohorts o...

OASIS +: leveraging machine learning to improve the prognostic accuracy of OASIS severity score for predicting in-hospital mortality.

BMC medical informatics and decision making
BACKGROUND: Severity scores assess the acuity of critical illness by penalizing for the deviation of physiologic measurements from normal and aggregating these penalties (also called "weights" or "subscores") into a final score (or probability) for q...

Machine learning-based mortality prediction model for heat-related illness.

Scientific reports
In this study, we aimed to develop and validate a machine learning-based mortality prediction model for hospitalized heat-related illness patients. After 2393 hospitalized patients were extracted from a multicentered heat-related illness registry in ...

Diagnostic and prognostic capabilities of a biomarker and EMR-based machine learning algorithm for sepsis.

Clinical and translational science
Sepsis is a major cause of mortality among hospitalized patients worldwide. Shorter time to administration of broad-spectrum antibiotics is associated with improved outcomes, but early recognition of sepsis remains a major challenge. In a two-center ...