Multimodal medical image fusion is crucial for enhancing diagnostic accuracy by integrating complementary information from different imaging modalities. Current fusion techniques face challenges in effectively combining heterogeneous features while p...
Alzheimer's disease (AD) is a primary degenerative brain disorder commonly found in the elderly, Mild cognitive impairment (MCI) can be considered a transitional stage from normal aging to Alzheimer's disease. Therefore, distinguishing between normal...
Accurately interpreting medical images and generating insightful narrative reports is indispensable for patient care but places heavy burdens on clinical experts. Advances in artificial intelligence (AI), especially in an area that we refer to as mul...
Histopathology image analysis plays a pivotal role in disease diagnosis and treatment planning, relying heavily on accurate nuclei segmentation for extracting vital cellular information. In recent years, artificial intelligence (AI) and in particular...
BACKGROUND: Predictive models like Residual Neural Networks (ResNets) can use Magnetic Resonance Imaging (MRI) data to identify cervix tumors likely to recur after radiotherapy (RT) with high accuracy. However, there persists a lack of insight into m...
BACKGROUND: Accurate brain tumor segmentation from MRI images is critical in the medical industry, directly impacts the efficacy of diagnostic and treatment plans. Accurate segmentation of tumor region can be challenging, especially when noise and ab...
Computational pathology has primarily focused on analyzing tissue slides, neglecting the valuable information contained in gross images. To bridge this gap, we proposed a novel approach leveraging the Swin Transformer architecture to develop a Swin-T...
BACKGROUND AND PURPOSE: Deep learning (DL)-based reconstruction enables improving the quality of MR images acquired with a short scan time. We aimed to prospectively compare the image quality and diagnostic performance in evaluating cervical degenera...
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
40138246
Ultrasound (US) is considered a key modality for the clinical assessment of hepatic steatosis (i.e., fatty liver) due to its noninvasiveness and availability. Deep learning methods have attracted considerable interest in this field, as they are capab...
Purpose To develop and evaluate a multilabel deep learning network to identify and quantify acute and chronic brain lesions at multisequence MRI after acute ischemic stroke (AIS) and assess relationships between clinical and model-extracted radiologi...