AIMC Topic: Infant, Newborn

Clear Filters Showing 31 to 40 of 743 articles

Artificial intelligence-based non-invasive bilirubin prediction for neonatal jaundice using 1D convolutional neural network.

Scientific reports
Neonatal jaundice, characterized by elevated bilirubin levels causing yellow discoloration of the skin and eyes in newborns, is a critical condition requiring accurate and timely diagnosis. This study proposes a novel approach using 1D Convolutional ...

Prediction of IUGR condition at birth by means of CTG recordings and a ResNet model.

Computers in biology and medicine
OBJECTIVE: Sub-optimal uterine-placental perfusion and fetal nutrition can lead to intrauterine growth restriction (IUGR), also called fetal growth restriction (FGR). Antenatal cardiotocography (CTG) can aid in the early detection of IUGR. Reliably d...

Interpretable machine learning model for early prediction of disseminated intravascular coagulation in critically ill children.

Scientific reports
Disseminated intravascular coagulation (DIC) is a thrombo-hemorrhagic disorder that can be life-threatening in critically ill children, and the quest for an accurate and efficient method for early DIC prediction is of paramount importance. Candidate ...

Evaluating how different balancing data techniques impact on prediction of premature birth using machine learning models.

PloS one
Premature birth can be defined as birth before 37 weeks of gestation, which is a significant global health issue, being the main cause for neonatal deaths. In this work, we evaluate machine learning models for predicting premature birth using Brazili...

Updates in Neonatal Seizures.

Clinics in perinatology
Neonatal seizures are a common medical emergency, necessitating prompt treatment. The most common etiologies include hypoxic-ischemic encephalopathy, ischemic stroke, and intracranial hemorrhage, with numerous other uncommon etiologies. Accurate diag...

AI-Enabled Screening for Retinopathy of Prematurity in Low-Resource Settings.

JAMA network open
IMPORTANCE: Retinopathy of prematurity (ROP) is the leading cause of preventable childhood blindness worldwide. If detected and treated early, ROP-associated blindness is preventable; however, identifying patients who might respond to treatment requi...

Machine Learning Identification of Neutrophil Extracellular Trap-Related Genes as Potential Biomarkers and Therapeutic Targets for Bronchopulmonary Dysplasia.

International journal of molecular sciences
Neutrophil extracellular traps (NETs) play a key role in the development of bronchopulmonary dysplasia (BPD), yet their molecular mechanisms in contributing to BPD remain unexplored. Using the GSE32472 dataset, which includes 100 blood samples from p...

O blood usage trends in the pediatric population 2015-2019: A multi-institutional analysis.

Transfusion
BACKGROUND: In 2019, AABB released the bulletin "Recommendations on the Use of Group O Red Blood Cells" in which the recommendations about pediatric and neonatal blood transfusions were limited. Eight U.S. pediatric hospitals sought to determine tren...

Machine learning combined with infrared spectroscopy for detection of hypertension pregnancy: towards newborn and pregnant blood analysis.

BMC pregnancy and childbirth
Biochemical changes in the cervix during labor are not well understood. This gap in knowledge is significant, as understanding the precise biochemical processes can provide critical insights into the mechanisms of labor and potentially inform better ...

Predicting Risk for Patent Ductus Arteriosus in the Neonate: A Machine Learning Analysis.

Medicina (Kaunas, Lithuania)
: Patent ductus arteriosus (PDA) is common in newborns, being associated with high morbidity and mortality. While maternal and neonatal conditions are known contributors, few studies use advanced machine learning (ML) as predictive factors. This stud...