AIMC Topic: Cervix Uteri

Clear Filters Showing 1 to 10 of 64 articles

Exploring potential methylation markers for ovarian cancer from cervical scraping samples.

Human genomics
BACKGROUND: Ovarian cancer has the highest mortality rate among gynecological cancers, making early detection crucial, as the five-year survival rate drops from 92% with early-stage diagnosis compared to 31% with late-stage diagnosis. Current diagnos...

Deep learning enabled liquid-based cytology model for cervical precancer and cancer detection.

Nature communications
Deep learning (DL) enabled liquid-based cytology has potential for cervical cancer screening or triage. Here, we develop a DL model using whole cytology slides from 17,397 women and test it on 10,826 additional cases through a three-stage process. Th...

Machine learning combined with infrared spectroscopy for detection of hypertension pregnancy: towards newborn and pregnant blood analysis.

BMC pregnancy and childbirth
Biochemical changes in the cervix during labor are not well understood. This gap in knowledge is significant, as understanding the precise biochemical processes can provide critical insights into the mechanisms of labor and potentially inform better ...

Discussion of a Simple Method to Generate Descriptive Images Using Predictive ResNet Model Weights and Feature Maps for Recurrent Cervix Cancer.

Tomography (Ann Arbor, Mich.)
BACKGROUND: Predictive models like Residual Neural Networks (ResNets) can use Magnetic Resonance Imaging (MRI) data to identify cervix tumors likely to recur after radiotherapy (RT) with high accuracy. However, there persists a lack of insight into m...

A deep ensemble learning approach for squamous cell classification in cervical cancer.

Scientific reports
Cervical cancer, arising from the cells of the cervix, the lower segment of the uterus connected to the vagina-poses a significant health threat. The microscopic examination of cervical cells using Pap smear techniques plays a crucial role in identif...

Generalizable deep neural networks for image quality classification of cervical images.

Scientific reports
Successful translation of artificial intelligence (AI) models into clinical practice, across clinical domains, is frequently hindered by the lack of image quality control. Diagnostic models are often trained on images with no denotation of image qual...

An automatic cervical cell classification model based on improved DenseNet121.

Scientific reports
The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical...

BMT: A Cross-Validated ThinPrep Pap Cervical Cytology Dataset for Machine Learning Model Training and Validation.

Scientific data
In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually e...

Development and Clinical Validation of Visual Inspection With Acetic Acid Application-Artificial Intelligence Tool Using Cervical Images in Screen-and-Treat Visual Screening for Cervical Cancer in South India: A Pilot Study.

JCO global oncology
PURPOSE: The burden of cervical cancer in India is enormous, with more than 60,000 deaths being reported in 2020. The key intervention in the WHO's global strategy for the elimination of cervical cancer is to aim for the treatment and care of 90% of ...