BACKGROUND: Early identification of patients with acute hypoxemic respiratory failure (AHRF) who are at risk of failing high-flow nasal cannula (HFNC) therapy could facilitate closer monitoring, and timely adjustment/escalation of treatment. We aimed...
Journal of healthcare management / American College of Healthcare Executives
Mar 6, 2025
GOAL: Efficient patient flow is critical at Tampa General Hospital (TGH), a large academic tertiary care center and safety net hospital with more than 50,000 discharges and 30,000 surgical procedures per year. TGH collaborated with GE HealthCare Comm...
BACKGROUND: The incidence of delirium in patients with burns receiving treatment in the intensive care unit (ICU) is high, reaching up to 77%, and has been associated with increased mortality rates. Therefore, early identification of patients at high...
BACKGROUND: Current prediction models are suboptimal for determining mortality risk in patients with acute pancreatitis (AP); this might be improved by using a machine learning (ML) model. In this study, we aimed to construct an explainable ML model ...
BACKGROUND: Sepsis-induced coagulopathy (SIC) is a complex condition characterized by systemic inflammation and coagulopathy. This study aimed to develop and validate a machine learning (ML) model to predict SIC risk in patients with sepsis.
BACKGROUND: The atherogenic index of plasma (AIP) is considered an important marker of atherosclerosis and cardiovascular risk. However, its potential role in predicting length of stay (LOS), especially in patients with atherosclerotic cardiovascular...
OBJECTIVE: The study aimed to develop machine learning (ML) models to predict the mortality of patients with acute gastrointestinal bleeding (AGIB) in the intensive care unit (ICU) and compared their prognostic performance with that of Acute Physiolo...
OBJECTIVE: This study aims to define the prioritisation of the needs for an intelligent robot's functions in the intensive care unit (ICU) from a clinical perspective.
OBJECTIVE: This study developed and validated a stacked ensemble machine learning model to predict the risk of acute kidney injury in patients with acute pancreatitis complicated by sepsis.
BACKGROUND: Agitation and sedation management is critical in intensive care as it affects patient safety. Traditional nursing assessments suffer from low frequency and subjectivity. Automating these assessments can boost intensive care unit (ICU) eff...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.