INTRODUCTION: The study hypothesizes that neural networks can be an effective tool for predicting treatment outcomes in patients with diabetic neovascular glaucoma (NVG), considering not only baseline intraocular pressure (IOP) values but also inflam...
The study of corneal biomechanics has become relevant in recent years due to its possible applications in the diagnosis, management, and treatment of various diseases such as glaucoma, keratorefractive surgery and different corneal diseases. The clin...
IMPORTANCE: Automated deep learning (DL) analyses of fundus photographs potentially can reduce the cost and improve the efficiency of reading center assessment of end points in clinical trials.
Translational vision science & technology
Nov 1, 2021
PURPOSE: To investigate whether a correction based on a Humphrey field analyzer (HFA) 24-2/30-2 visual field (VF) can improve the prediction performance of a deep learning model to predict the HFA 10-2 VF test from macular optical coherence tomograph...
PURPOSE: (1) To evaluate the performance of deep learning (DL) classifier in detecting glaucoma, based on wide-field swept-source optical coherence tomography (SS-OCT) images. (2) To assess the performance of DL-based fusion methods in diagnosing gla...
PURPOSE: To compare change over time in eye-specific optical coherence tomography (OCT) retinal nerve fiber layer (RNFL)-based region-of-interest (ROI) maps developed using unsupervised deep-learning auto-encoders (DL-AE) to circumpapillary RNFL (cpR...
Translational vision science & technology
Jun 1, 2021
PURPOSE: To develop a deep learning model to estimate the visual field (VF) from spectral-domain optical coherence tomography (SD-OCT) and swept-source OCT (SS-OCT) and to compare the performance between them.
PRCIS: Telepresence robots (TR) present the versatility to effectively provide remote educational sessions for patients affected by glaucoma to improve disease knowledge. Given COVID-19's effect on clinical practice, TR can maintain social distancing...
IMPORTANCE: Conventional segmentation of the retinal nerve fiber layer (RNFL) is prone to errors that may affect the accuracy of spectral-domain optical coherence tomography (SD-OCT) scans in detecting glaucomatous damage.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.