SIGNIFICANCE: Glaucoma, a leading cause of global blindness, disproportionately affects low-income regions due to expensive diagnostic methods. Affordable intraocular pressure (IOP) measurement is crucial for early detection, especially in low- and m...
OBJECTIVE: To develop machine learning (ML) models, using pre and intraoperative surgical parameters, for predicting trabeculectomy outcomes in the eyes of patients with juvenile-onset primary open-angle glaucoma (JOAG) undergoing primary surgery.
PURPOSE: Identifying glaucoma patients at high risk of progression based on widely available structural data is an unmet task in clinical practice. We test the hypothesis that baseline or serial structural measures can predict visual field (VF) progr...
PURPOSE: Develop and evaluate the performance of a deep learning model (DLM) that forecasts eyes with low future visual field (VF) variability, and study the impact of using this DLM on sample size requirements for neuroprotective trials.
PRCIS: A deep learning model trained on macular OCT imaging studies detected clinically significant functional glaucoma progression and was also able to predict future progression.
BACKGROUND: Despite, the potential clinical utility of 60-4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an a...
Glaucoma is a slowly progressing optic neuropathy that may eventually lead to blindness. To help patients receive customized treatment, predicting how quickly the disease will progress is important. Structural assessment using optical coherence tomog...
Primary angle closure glaucoma is a visually debilitating disease that is under-detected worldwide. Many of the challenges in managing primary angle closure disease (PACD) are related to the lack of convenient and precise tools for clinic-based disea...
The aim of this study was to predict three visual filed (VF) global indexes, mean deviation (MD), pattern standard deviation (PSD), and visual field index (VFI), from optical coherence tomography (OCT) parameters including Bruch's Membrane Opening-Mi...
PURPOSE: To develop deep learning (DL) models estimating the central visual field (VF) from optical coherence tomography angiography (OCTA) vessel density (VD) measurements.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.