PURPOSE: Accurate identification of iridocorneal structures on gonioscopy is difficult to master, and errors can lead to grave surgical complications. This study aimed to develop and train convolutional neural networks (CNNs) to accurately identify t...
The purpose of this study was to develop an automatic deep learning-based approach and corresponding free, open-source software to perform segmentation of the Schlemm's canal (SC) lumen in optical coherence tomography (OCT) scans of living mouse eyes...
PURPOSE: To compare convolutional neural network (CNN) analysis of en face vessel density images to gradient boosting classifier (GBC) analysis of instrument-provided, feature-based optical coherence tomography angiography (OCTA) vessel density measu...
PURPOSE: To assess the generalisability and performance of a deep learning classifier for automated detection of gonioscopic angle closure in anterior segment optical coherence tomography (AS-OCT) images.
BACKGROUND/AIMS: To identify biometric parameters that explain misclassifications by a deep learning classifier for detecting gonioscopic angle closure in anterior segment optical coherence tomography (AS-OCT) images.
PURPOSE: To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON...
IEEE transactions on bio-medical engineering
Jun 17, 2021
OBJECTIVE: Glaucoma is the second leading cause of blindness worldwide. Glaucomatous progression can be easily monitored by analyzing the degeneration of retinal ganglion cells (RGCs). Many researchers have screened glaucoma by measuring cup-to-disc ...
Cupping of the optic nerve head, a highly heritable trait, is a hallmark of glaucomatous optic neuropathy. Two key parameters are vertical cup-to-disc ratio (VCDR) and vertical disc diameter (VDD). However, manual assessment often suffers from poor a...
AIMS: To validate a deep learning (DL) algorithm (DLA) for 360° angle assessment on swept-source optical coherence tomography (SS-OCT) (CASIA SS-1000, Tomey Corporation, Nagoya, Japan).
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.