AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Intraocular Pressure

Showing 51 to 60 of 117 articles

Clear Filters

Importance and use of corneal biomechanics and its diagnostic utility.

Cirugia y cirujanos
The study of corneal biomechanics has become relevant in recent years due to its possible applications in the diagnosis, management, and treatment of various diseases such as glaucoma, keratorefractive surgery and different corneal diseases. The clin...

A Deep Learning Approach to Improve Retinal Structural Predictions and Aid Glaucoma Neuroprotective Clinical Trial Design.

Ophthalmology. Glaucoma
PURPOSE: To investigate the efficacy of a deep learning regression method to predict macula ganglion cell-inner plexiform layer (GCIPL) and optic nerve head (ONH) retinal nerve fiber layer (RNFL) thickness for use in glaucoma neuroprotection clinical...

Deep Learning-Based Noise Reduction Improves Optical Coherence Tomography Angiography Imaging of Radial Peripapillary Capillaries in Advanced Glaucoma.

Current eye research
PURPOSE: We applied deep learning-based noise reduction (NR) to optical coherence tomography-angiography (OCTA) images of the radial peripapillary capillaries (RPCs) in eyes with glaucoma and investigated the usefulness of this method as an objective...

Towards 'automated gonioscopy': a deep learning algorithm for 360° angle assessment by swept-source optical coherence tomography.

The British journal of ophthalmology
AIMS: To validate a deep learning (DL) algorithm (DLA) for 360° angle assessment on swept-source optical coherence tomography (SS-OCT) (CASIA SS-1000, Tomey Corporation, Nagoya, Japan).

Automated diagnosing primary open-angle glaucoma from fundus image by simulating human's grading with deep learning.

Scientific reports
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Although deep learning methods have been proposed to diagnose POAG, it remains challenging to develop a robust and explainable algorithm to automatically facil...

Policy-Driven, Multimodal Deep Learning for Predicting Visual Fields from the Optic Disc and OCT Imaging.

Ophthalmology
PURPOSE: To develop and validate a deep learning (DL) system for predicting each point on visual fields (VFs) from disc and OCT imaging and derive a structure-function mapping.

Predicting Visual Fields From Optical Coherence Tomography via an Ensemble of Deep Representation Learners.

American journal of ophthalmology
PURPOSE: To develop and validate a deep learning method of predicting visual function from spectral domain optical coherence tomography (SD-OCT)-derived retinal nerve fiber layer thickness (RNFLT) measurements and corresponding SD-OCT images.

Diagnostic Accuracy of Artificial Intelligence in Glaucoma Screening and Clinical Practice.

Journal of glaucoma
PURPOSE: Artificial intelligence (AI) has been shown as a diagnostic tool for glaucoma detection through imaging modalities. However, these tools are yet to be deployed into clinical practice. This meta-analysis determined overall AI performance for ...

Detecting Glaucoma in the Ocular Hypertension Study Using Deep Learning.

JAMA ophthalmology
IMPORTANCE: Automated deep learning (DL) analyses of fundus photographs potentially can reduce the cost and improve the efficiency of reading center assessment of end points in clinical trials.

Deep Learning Image Analysis of Optical Coherence Tomography Angiography Measured Vessel Density Improves Classification of Healthy and Glaucoma Eyes.

American journal of ophthalmology
PURPOSE: To compare convolutional neural network (CNN) analysis of en face vessel density images to gradient boosting classifier (GBC) analysis of instrument-provided, feature-based optical coherence tomography angiography (OCTA) vessel density measu...