Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) are important diffusion MRI techniques for detecting microstructure abnormities in diseases such as Alzheimer's. The advantages of DKI over DTI have been reported generally; however,...
PURPOSE: Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can be automatica...
White matter hyperintensities (WMHs) are abnormal signals within the white matter region on the human brain MRI and have been associated with aging processes, cognitive decline, and dementia. In the current study, we proposed a U-Net with multi-scale...
White matter hyperintensities (WMHs) represent the most common neuroimaging marker of cerebral small vessel disease (CSVD). The volume and location of WMHs are important clinical measures. We present a pipeline using deep fully convolutional network ...
PURPOSE: White matter hyperintensity (WMHI) lesions on MR images are an important indication of various types of brain diseases that involve inflammation and blood vessel abnormalities. Automated quantification of the WMHI can be valuable for the cli...
PURPOSE: To validate the diagnostic performance of commercially available, deep learning-based automatic white matter hyperintensity (WMH) segmentation algorithm for classifying the grades of the Fazekas scale and differentiating subcortical vascular...
An important step in the analysis of magnetic resonance imaging (MRI) data for neuroimaging is the automated segmentation of white matter hyperintensities (WMHs). Fluid Attenuated Inversion Recovery (FLAIR-weighted) is an MRI contrast that is particu...
While neurological manifestations are core features of Fabry disease (FD), quantitative neuroimaging biomarkers allowing to measure brain involvement are lacking. We used deep learning and the brain-age paradigm to assess whether FD patients' brains ...