AIMC Topic: Lung Diseases

Clear Filters Showing 11 to 20 of 155 articles

Exploring the assessment of post-cardiac valve surgery pulmonary complication risks through the integration of wearable continuous physiological and clinical data.

BMC medical informatics and decision making
BACKGROUND: Postoperative pulmonary complications (PPCs) following cardiac valvular surgery are characterized by high morbidity, mortality, and economic cost. This study leverages wearable technology and machine learning algorithms to preoperatively ...

AI-assisted detection for chest X-rays (AID-CXR): a multi-reader multi-case study protocol.

BMJ open
INTRODUCTION: A chest X-ray (CXR) is the most common imaging investigation performed worldwide. Advances in machine learning and computer vision technologies have led to the development of several artificial intelligence (AI) tools to detect abnormal...

CNN-O-ELMNet: Optimized Lightweight and Generalized Model for Lung Disease Classification and Severity Assessment.

IEEE transactions on medical imaging
The high burden of lung diseases on healthcare necessitates effective detection methods. Current Computer-aided design (CAD) systems are limited by their focus on specific diseases and computationally demanding deep learning models. To overcome these...

Attention-based multi-residual network for lung segmentation in diseased lungs with custom data augmentation.

Scientific reports
Lung disease analysis in chest X-rays (CXR) using deep learning presents significant challenges due to the wide variation in lung appearance caused by disease progression and differing X-ray settings. While deep learning models have shown remarkable ...

A Physics-Informed Deep Neural Network for Harmonization of CT Images.

IEEE transactions on bio-medical engineering
OBJECTIVE: Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs).

Development of a simplified model and nomogram for the prediction of pulmonary hemorrhage in respiratory distress syndrome in extremely preterm infants.

BMC pediatrics
BACKGROUND: Pulmonary hemorrhage (PH) in respiratory distress syndrome (RDS) in extremely preterm infants exhibits a high mortality rate and poor long-term outcomes. The aim of the present study was to develop a machine learning (ML) predictive model...

Real-World evaluation of an AI triaging system for chest X-rays: A prospective clinical study.

European journal of radiology
Chest X-rays (CXRs) are crucial for diagnosing and managing lung conditions. While CXR is a common and cost-effective diagnostic tool, interpreting the high volume of CXRs is challenging due to workforce limitations. Artificial intelligence (AI) offe...

Deep-learning model accurately classifies multi-label lung ultrasound findings, enhancing diagnostic accuracy and inter-reader agreement.

Scientific reports
Despite the increasing use of lung ultrasound (LUS) in the evaluation of respiratory disease, operators' competence constrains its effectiveness. We developed a deep-learning (DL) model for multi-label classification using LUS and validated its perfo...

Integrating StEP-COMPAC definition and enhanced recovery after surgery status in a machine-learning-based model for postoperative pulmonary complications in laparoscopic hepatectomy.

Anaesthesia, critical care & pain medicine
BACKGROUND: Postoperative pulmonary complications (PPCs) contribute to high mortality rates and impose significant financial burdens. In this study, a machine learning-based prediction model was developed to identify patients at high risk of developi...

Fuzzy lattices assisted EJAYA Q-learning for automated pulmonary diseases classification.

Biomedical physics & engineering express
This work proposes a novel technique called Enhanced JAYA (EJAYA) assisted Q-Learning for the classification of pulmonary diseases, such as pneumonia and tuberculosis (TB) sub-classes using chest x-ray images. The work introduces Fuzzy lattices forma...