BACKGROUND: The morbidity of pulmonary embolism (PE) is only lower than that of coronary heart disease and hypertension. Early detection, early diagnosis, and timely treatment are the keys to effectively reduce the risk of death. Nevertheless, PE seg...
BMC medical informatics and decision making
Jun 21, 2022
BACKGROUND: In developing countries where both high rates of smoking and endemic tuberculosis (TB) are often present, identification of early lung cancer can be significantly confounded by the presence of nodules such as those due to latent TB (LTB)....
RATIONALE AND OBJECTIVES: To evaluate the image properties of lung-specialized deep-learning-based reconstruction (DLR) and its applicability in ultralow-dose CT (ULDCT) relative to hybrid- (HIR) and model-based iterative-reconstructions (MBIR).
This app project was aimed to remotely deliver diagnoses and disease-progression information to COVID-19 patients to help minimize risk during this and future pandemics. Data collected from chest computed tomography (CT) scans of COVID-19-infected pa...
Detection of malignant lung nodules from Computed Tomography (CT) images is a significant task for radiologists. But, it is time-consuming in nature. Despite numerous breakthroughs in studies on the application of deep learning models for the identif...
Oxidative medicine and cellular longevity
Jun 14, 2022
The small size of labelled samples is one of the challenging problems in identifying early lung nodules from CT images using deep learning methods. Recent literature on the topic shows that deep convolutional generative adversarial network (DCGAN) ha...
Computer methods and programs in biomedicine
May 25, 2022
BACKGROUND AND OBJECTIVE: During lung cancer radiotherapy, the position of infrared reflective objects on the chest can be recorded to estimate the tumor location. However, radiotherapy systems have a latency inherent to robot control limitations tha...
PURPOSE: To assess the value of novel deep learning (DL) scores combined with complementary lung imaging reporting and data system 1.1 (cLung-RADS 1.1) in managing the risk stratification of ground-glass nodules (GGNs) and therefore improving the eff...
BACKGROUND: COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wilie...